

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-09/0338 of 20 September 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	JORDAHL anchor channel JTA, JZA and JXA
Product family to which the construction product belongs	Anchor channels
Manufacturer	PohlCon GmbH Nobelstraße 51 12057 Berlin DEUTSCHLAND
Manufacturing plant	14959 Trebbin, Industriestr. 5
This European Technical Assessment contains	53 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330008-03-0601-V01, Edition 06/2022
This version replaces	ETA-09/0338 issued on 28 June 2021

European Technical Assessment ETA-09/0338 English translation prepared by DIBt

Page 2 of 53 | 20 September 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 53 | 20 September 2022

Specific Part

1 Technical description of the product

The JORDAHL anchor channel JTA, JZA and JXA is system consisting of C-shaped channel profile steel and stainless steel and at least two metal anchors non-detachably fixed on the channel back and channel bolts.

The anchor channel is embedded surface-flush in the concrete. Channel bolts JORDAHL T-bolts with appropriate hexagon nuts and washers are fixed to the channel.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor channel is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor channel of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under tension load (static and quasi-static loading)	
- Resistance to steel failure of anchors	$N_{Rk,s,a}$ see Annex C1 to C3
 Resistance to steel failure of the connection between anchors and channel 	$N_{Rk,s,c}$ see Annex C1 to C3
 Resistance to steel failure of channel lips and subsequently pull-out of channel bolt 	$N^0_{Rk,s,l}$; $s_{l,N}$ see Annex C1 to C3
- Resistance to steel failure of channel bolt	N _{Rk,s} see Annex C6
 Resistance to steel failure by exceeding the bending strength of the channel 	s_{max} see Annex A10 and A11 $M_{Rk,s,flex}$ see Annex C4 and C5
 Maximum installation torque to avoid damage during installation 	$T_{inst,g}$; $T_{inst,s}$ see Annex B5 and B6
- Resistance to pull-out failure of the anchor	$N_{Rk,p}$ see Annex C7 to C9
- Resistance to concrete cone failure	h_{ef} see Annex B3 and B4 $k_{cr,N}$; $k_{ucr,N}$ see Annex C7 to C9
 Minimum edge distances, spacing and member thickness to avoid concrete splitting during installation 	s_{min} see Annex A10 and A11 c_{min} ; h_{min} see Annex B3 and B4
- Characteristic edge distance and spacing to avoid splitting of concrete under load	$s_{cr,sp}$; $c_{cr,sp}$ see Annex C7 to C9
 Resistance to blowout failure - bearing area of anchor head 	A_h see Annex A7 and A8

European Technical Assessment ETA-09/0338

English translation prepared by DIBt

Page 4 of 53 | 20 September 2022

Essential characteristic	Performance
Characteristic resistance under shear load (static and quasi-static loading)	
 Resistance to steel failure of channel bolt under shear loading without lever arm 	$V_{Rk,s}$ see Annex C16 and C17
 Resistance to steel failure by bending of the channel bolt under shear load with lever arm 	$M^0_{Rk,s}$ see Annex C16 and C17
 Resistance to steel failure of channel lips, steel failure of connection between anchor and channel and steel failure of anchor (shear load in transverse direction) 	$V^0_{Rk,s,l,y}$; $s_{l,V}$; $V_{Rk,s,c,y}$; $V_{Rk,s,a,y}$ see Annex C11 to C13
 Resistance to steel failure of connection between channel lips and channel bolt (shear load in longitudinal channel axis) 	$V_{Rk,s,l,x}$ see Annex C11 and C13
 Factor for sensitivity to installation (longitudinal shear) 	γ_{inst} see Annex C11 and C13
 Resistance to steel failure of the anchor (longitudinal shear) 	$V_{Rk,s,a,x}$ see Annex C11 and C13
 Resistance to steel failure of connection between anchor and channel (longitudinal shear) 	$V_{Rk,s,c,x}$ see Annex C11 and C13
- Resistance to concrete pry-out failure	k_8 see Annex C14 and C15
- Resistance to concrete edge failure	$k_{cr,V}$; $k_{ucr,V}$ see Annex C14 and C15
Characteristic resistance under combined tension and shear load (static and quasi-static load)	
- Resistance to steel failure of the anchor channel	k_{13} ; k_{14} see Annex C19
Characteristic resistance under fatigue tension loading	
 Fatigue resistance to steel failure of the whole system (continuous or tri-linear function, test method A1, A2) 	$\Delta N_{Rk,s,0,n}$ (n = 1 to n = ∞) see Annex C23
 Fatigue limit resistance to steel failure of the whole system (test method B) 	$\Delta N_{Rk,s,0,\infty}$ see Annex C23
 Fatigue resistance to steel failure of the whole system (linearized function, test method C) 	$\Delta N_{Rk,s,lo,n}$; $N_{lok,s,n}$ ($n = 10^4$ to $n = \infty$) see Annex C24
 Fatigue resistance to concrete related failure (exponential function, test method A1, A2) 	$\Delta N_{Rk,c,0,n}$; $\Delta N_{Rk,p,0,n}$ ($n = 1$ to $n = \infty$) see Annex C23
 Fatigue limit resistance to concrete related failure (test method B) 	$\Delta N_{Rk,c,0,\infty}$; $\Delta N_{Rk,p,0,\infty}$ see Annex C23
 Fatigue resistance to concrete related failure (linearized function, test method C) 	$\Delta N_{Rk,c,E,n}$; $\Delta N_{Rk,p,E,n}$ ($n = 10^4$ to $n = \infty$) see Annex C25

Page 5 of 53 | 20 September 2022

European Technical Assessment

ETA-09/0338

English translation prepared by DIBt

Essential characteristic	Performance
Displacements (static and quasi-static load)	$\begin{array}{l} \delta_{N0} \ ; \ \delta_{N^{\infty}} \ see \ Annex \ C10 \\ \delta_{V,y,0} \ ; \ \delta_{V,y,\infty} \ ; \ \delta_{V,x,0} \ ; \ \delta_{V,x,\infty} \\ see \ Annex \ C18 \end{array}$

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C20 to C22

3.3 Other essential characteristics

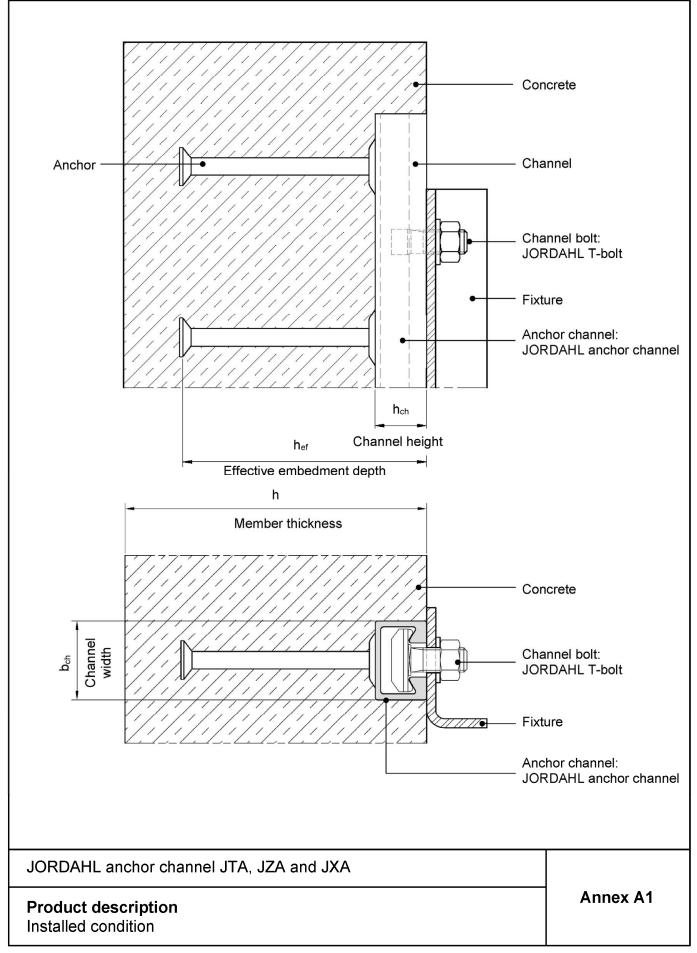
Essential characteristic	Performance
Durability	See Annex B1

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with EAD No. 330008-03-0601-V01, the applicable European legal act is: [2000/273/EC].

The system to be applied is: 1

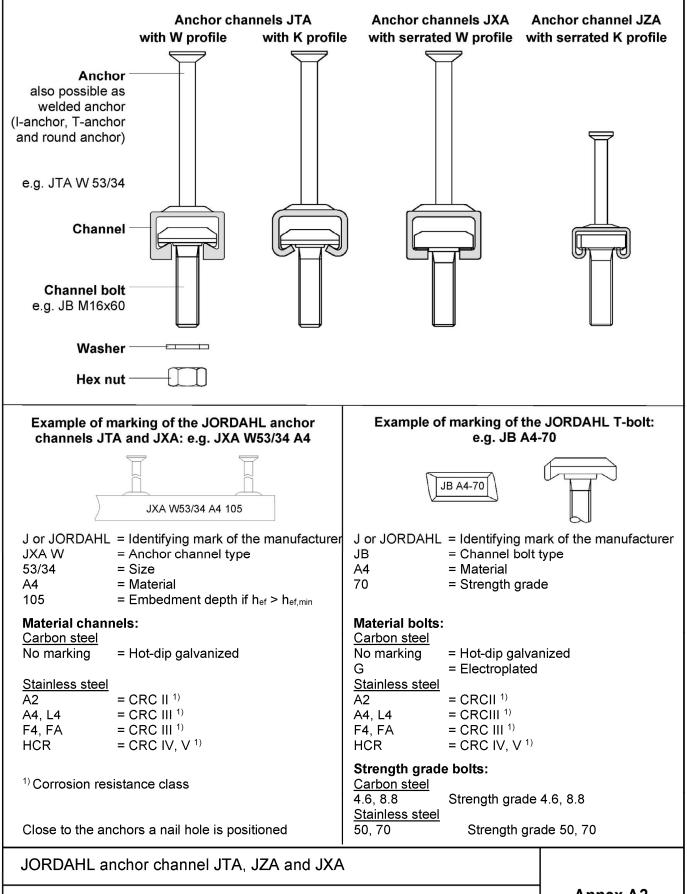
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 20 September 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:* Müller Page 6 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt



Page 7 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

Product description Marking and materials

Page 8 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

	Intended use						
	1	2					
Specification	Anchor channels may only be used in structures subject to dry internal conditions	Anchor channels may also be used in structures subject to internal conditions with usual humidity					
	Mate	erials					
Channel profile	Carbon steel	Carbon steel hot-dip galvanized $\ge 55 \ \mu m^{4)}$					
1 Channel profile	hot-dip galvanized $\geq 55~\mu m^{4)}$	Stainless steel ⁵⁾ CRC II					
2 Anchor	Carbon steel	Carbon steel hot-dip galvanized \geq 55 μm $^{4)}$					
	not-dip galvanized ≥ 55 μm ⁴	Stainless steel ⁵⁾ CRC II					
3 Channel bolt	Carbon steel	Carbon steel strength grade 4.6, 8.8 ⁶⁾ hot-dip galvanized ≥ 50 µm ³⁾					
	electroplated $\ge 5 \ \mu m^{2}$	Stainless steel ⁵⁾ CRC II strength grade 50, 70 ⁹⁾					
Washer	Carbon steel product class A ⁷⁾ bardness class 200 HV ⁷⁾	Carbon steel hot-dip galvanized ≥ 50 µm ³⁾ Stainless steel ⁵⁾					
	electroplated \geq 5 µm ²)	steel type A2, A3, A4 ⁹⁾					
Hexagonal nut	Carbon steel strength grade 5, 8 ⁸⁾ electroplated \ge 5 μ m ²⁾	Carbon steel strength grade 5, 8 ⁻⁸⁾ hot-dip galvanized ≥ 50 μm ⁻³⁾ Stainless steel ⁵⁾ steel type A2, A3, A4 ⁻⁹⁾ strength grade 70, 80 ⁻⁹⁾					
	Channel profile	Specification structures subject to dry internal conditions Structures subject to dry internal conditions Mate Channel profile Carbon steel hot-dip galvanized $\ge 55 \ \mu m^{-4}$ Channel profile Carbon steel hot-dip galvanized $\ge 55 \ \mu m^{-4}$ Anchor Carbon steel hot-dip galvanized $\ge 55 \ \mu m^{-4}$ Channel bolt Carbon steel strength grade 4.6, 8.8 $^{6)}$ electroplated $\ge 5 \ \mu m^{-2}$ Washer Carbon steel product class A $^{7)}$ hardness class 200 HV $^{7)}$ electroplated $\ge 5 \ \mu m^{-2}$ Hexagonal nut Carbon steel strength grade 5, 8 $^{8)}$					

⁴⁾ Hot-dip galvanized on the basis of EN ISO 1461:2009, but coating thickness ≥ 55 μm
 ⁵⁾ Stainless steel anchors only in combination with stainless steel channels, bolts, washers and nuts

⁶⁾ According to EN ISO 898-1:2013

⁷⁾ According to EN ISO 7089:2000 and EN ISO 7093-1:2000, not included in delivery

⁸⁾ According to EN ISO 4032:2012

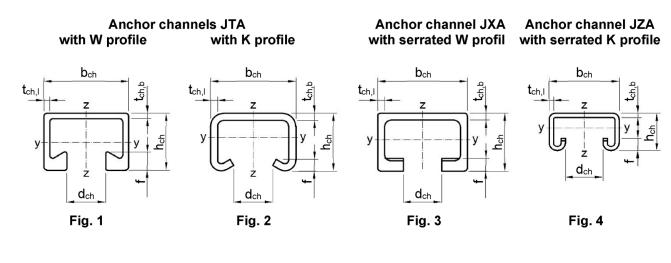
⁹⁾ According to EN ISO 3506-1:2020

JORDAHL anchor channel JTA, JZA and JXA

Product description Materials and intended use

Page 9 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt


			Intended use		
		3	4	5	
ltem no.	Specification	For CRC III according to EN 1993-1-4:2006	Für CRC IV gemäß EN 1993-1-4:2006	Für CRC V gemäß EN 1993-1-4:2006	
			Materials	<u> </u>	
1	Channel profile	Stainless steel CRC III	Stainless steel CRC IV	Stainless steel CRC V	
2 Anchor	Anchor		Stainless steel CRC V		
	Carbon steel ¹⁾	Carbon steel ¹⁾			
3	Channel bolt	Stainless steel CRC III strength grade 50, 70 ⁹⁾	Stainless steel CRC IV strength grade 50, 70 ⁹⁾	Stainless steel CRC V strength grade 50, 70 ⁹⁾	
4	Washer	Stainless steel CRC III steel type A4 ⁹⁾	Stainless steel CRC IV steel type A5 ⁹⁾	Stainless steel CRC V steel type A8 ⁹⁾	
5	Hexagonal nut	Stainless steel CRC III steel type A4 ⁹⁾ strength grade 70, 80 ⁶⁾	Stainless steel CRC IV steel type A5 ⁹⁾ strength grade 70, 80 ⁶⁾	Stainless steel CRC V steel type A8 ⁹⁾ strength grade 70, 80 ⁶⁾	
AC: ²⁾ EI ³⁾ H ¹ ³⁾ H ¹ ³⁾ S ¹ ³⁾ A ¹	2010 lectroplated according to ot-dip galvanized accord ot-dip galvanized on the tainless steel anchors o ccording to EN ISO 898	strength grade 70, 80 ⁶⁾ ded anchors, with sufficient to EN ISO 4042:2018 ding to EN ISO 10684:2004 e basis of EN ISO 1461:200 only in combination with stat 3-1:2013 39:2000 and EN ISO 7093-7	strength grade 70, 80 ⁶⁾ t concrete cover according 4 + AC:2009 09, but coating thickness ≥ inless steel channels, bolts	strength grade 70, 80 ⁶ to EN 1992-1-1:2004 + 55 µm s, washers and nuts	

⁹⁾ According to EN ISO 3506-1:2020

JORDAHL anchor channel JTA, JZA and JXA

Product description Materials and intended use

Table A2: Dimensions of profile – carbon steel

A		5 1	erial			Dimensi	on [mm]			[mm⁴]
Anchor channel		Fig.	Material	b ch	h _{ch}	t ch,b	t _{ch,I}	d _{ch}	f	ly
	W40/22 W40+	1		39,50	23,00	2,60	2,40	18,00	6,00	20.029
	W50/30 W50+	1	on steel	49,00	30,00	3,20	2,75	22,50	7,85	52.896
	W53/34	1		52,50	33,50	4,10	4,00	22,50	10,50	93.262
	W55/42	1		54,50	42,00	5,00	5,00	26,00	12,90	187.464
	W72/48	1		72,00	48,50	4,50	5,00	33,00	15,50	349.721
JTA	K28/15	2		28,00	15,25	2,25	2,25	12,00	2,25	4.060
	K38/17	2		38,00	17,50	3,00	3,00	18,00	3,00	8.547
	K40/25	2		40,00	25,00	2,75	2,75	18,00	5,60	20.570
	K50/30	2	Carbon	50,00	30,00	3,00	3,00	22,00	7,39	41.827
	K53/34	2		53,50	33,00	4,50	4,50	22,00	7,90	72.079
	K72/48	2		72,00	49,00	6,00	6,00	33,00	9,90	293.579
JZA	K41/22	4		41,00	22,50	2,50	2,50	22,0	8,00	15.000
	W29/20	3		29,00	20,00	2,50	3,50	14,00	5,00	10.200
	W38/23	3		38,00	23,00	3,50	3,00	18,00	5,50	20.953
JXA	W53/34	3		52,50	34,00	4,00	4,00	22,50	7,50	92.910
	W64/44	3		64,00	44,00	4,50	5,00	26,00	10,00	241.800

JORDAHL anchor channel JTA, JZA and JXA

Product description

Types of channels – carbon steel

Page 11 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

Anchor channel			erial		Dimension [mm]					
		Fig. ¹⁾	Material	b ch	hch	t ch,b	t ch,I	d _{ch}	f	ly
	W40/22 W40+	1		39,50	23,00	2,60	2,40	18,00	6,00	20.029
	VV50/30 VV50+	1		49,00	30,00	3,20	2,75	22,50	7,85	52.896
	W53/34	1		52,50	33,50	4,10	4,00	22,50	10,50	93.262
	W55/42 ²⁾ 1		_	_	_	_	_	_	-	
JTA	W72/48	1	s steel	72,00	48,50	4,50	5,00	33,00	15,50	349.72
	K28/15	2		28,00	15,25	2,25	2,25	12,00	2,25	4.060
	K38/17	2		38,00	17,50	3,00	3,00	18,00	3,00	8.547
	K40/25	2	Stainless	39,50	25,00	2,50	2,50	18,00	5,40	19.097
	K50/30	2	Stair	50,00	30,00	3,00	3,00	22,00	7,39	41.827
	K53/34	2		53,50	33,00	4,50	4,50	22,00	7,90	72.079
	K72/48	2		72,00	49,00	6,00	6,00	33,00	9,90	293.57
JZA	K41/22	4		41,00	22,50	2,5	2,50	22,00	6,50	15.000
	W29/20 ²⁾	3		_	—	_	_	_	_	_
	W38/23	3		38,00	23,00	3,50	3,00	18,00	5,50	20.953
JXA	W53/34	3		52,50	34,00	4,00	4,00	22,50	7,50	92.910
	W64/44 ²⁾	3		_	_	_	_	_	_	_

²⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

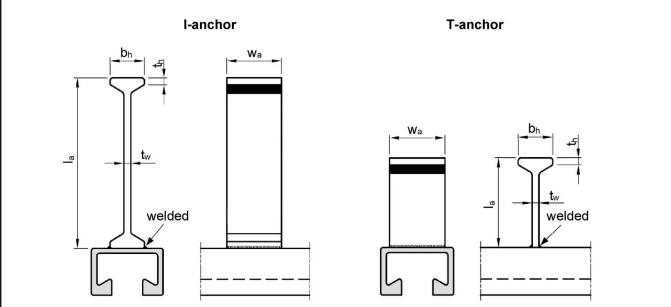
Product description Types of channels – stainless steel

Page 12 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

Round anchor
¹) Only anchor channel JTA: welded anchors

Table A4: Dimensions of round anchors


An	chor channel	Туре	da	dh	tn	An	I _{a,min}	Mat	erial
			[mm]	[mm]	[mm]	[mm ²]	[mm]	Carbon steel	Stainless steel
	K28/15		7,0	12,0	2,0	75	31,8	1	1
	W40/22, K40/25		9.5	15.0	2.0	120	56,0	1	1
	W40+		8,5	15,0	2,0	120	70,0	-	1
	K38/17	-		17.0	2.0	100	61,5	1	1
	W40/22, K40/25		9,0	17,0	3,0	163	57,0	1	1
	W50/30, K50/30		9,0	17,5	3,0	176	67,0	1	1
JTA	VV50+		10,0	19,5	3,0	220	79,0	1	1
	VV40+	_	10.0	10.0	2.0	191	71,0	1	_
	W50/30, K50/30	R	10,8	19,0	3,0		67,0	1	_
	W53/34, K53/34		11,5	23,5	3,0	330	124,5	1	1
	W55/42		15,5	28,0	3,5	427	136,5	1	_
	W72/48, K72/48		15,5	31,0	3,5	566	133,5	1	1
JZA	K41/22		9,0	17,0	3,0	163	55,5	1	1
	W29/20		9,0	17,0	3,0	163	61,0	1	_
JXA	W38/23		10,0	19,5	3,0	220	75,0	1	1
	W53/34		11,5	23,5	3,0	330	124,5	1	1

JORDAHL anchor channel JTA, JZA and JXA

Product description

Types of anchors – round anchors

Available configurations (anchor type, orientation of anchor and welding): refer to Annex A9, A10 and A11

An	chor channel	Туре	Wa	bh	tw	th	Ah	l _{a,min}	Mate	erial
			[mm]	[mm]	[mm]	[mm]	[mm ²]	[mm]	Carbon steel	Stainless steel
	K28/15, K38/17		10				130	62	1	1
	K40/25	I 60	12	100	5.0	2.2	234	62	1	1
	W40/22		20	18,0	5,0	3,3	260	62	~	1
	W40/22	T 60	20				260	38	~	1
	K50/30	1 69	18				234	69	1	1
	W50/30	109	25	18,0	5,0	3,5	325	69	~	1
	W50/30	T 69	25				325	45	1	1
JTA	W40+		25				275	128	1	-
	W50+	I 128	30	17,0	6,0	5,0	330	128	1	-
	K53/34	1120	26				286	128	1	_
	W53/34		40				440	128	1	-
	W53/34	T 128	40				440	48	~	-
	W55/42	1 1 4 0	45				581	140	1	-
	W72/48, K72/48	140	40	20,0	7,1	6,0	516	140	1	_
	W55/42	T 140	45				581	48	1	_
	W38/23	1408	20				220	128	1	_
	W53/34	I 128	40	17.0		50	440	128	1	_
JXA	W38/23	T 400	20	17,0	6,0	5,0	220	36	1	_
	W53/34	T 128	40				440	47	1	_
	W64/44	l 140	45	20,0	7,1	5,0	581	140	1	_

JORDAHL anchor channel JTA, JZA and JXA

Product description

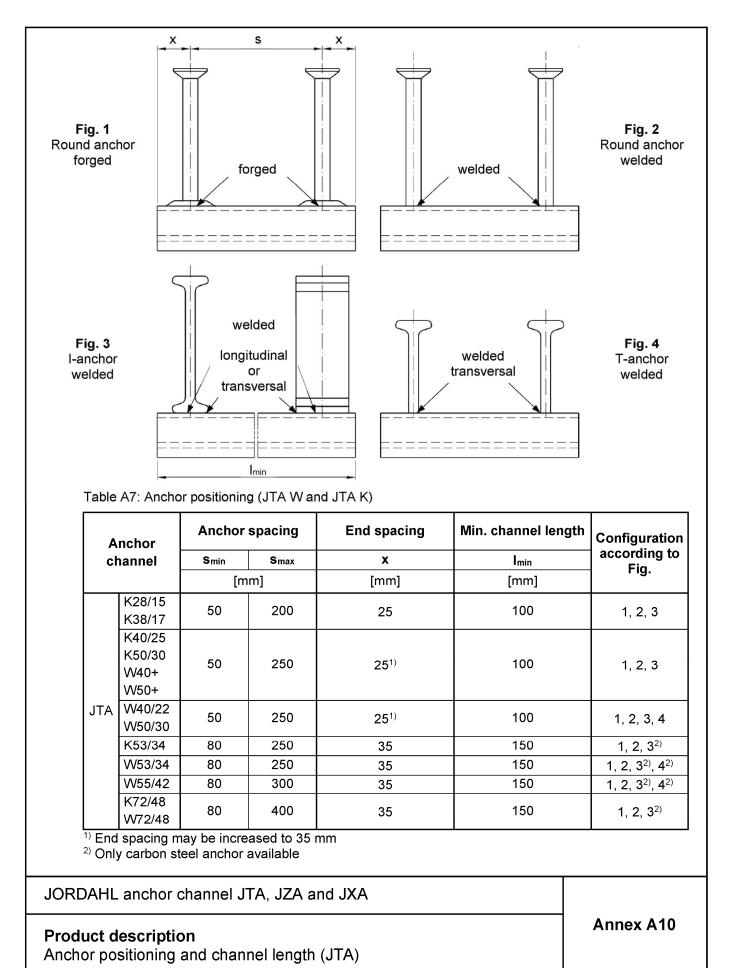
Types of anchors – I-anchors and T-anchors

Page 14 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

	_		1	Anchor typ	pe		Char	nel bolt	type	
	nchor	nchor		1-4110	-		innel bolt	thing bolt	ed bolt	
ch	annel	Round anchor	Anchor position	Weld seam position	Anchor position	Weld seam position	Smooth channel bolt	Double notching bolt	Serrated bolt	
	W40/22	1	transversal/ longitudinal	transversal/ longitudinal	transversal	transversal	1	1	_	
	W40+	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	1	_	
	W50/30	1	transversal/ longitudinal	transversal/ longitudinal	transversal	transversal	1	1	-	
	W50+	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	1	_	
	W53/34	1	transversal/ longitudinal	transversal/ longitudinal	transversal	transversal	1	1	_	
	W55/42	1	transversal/ longitudinal	transversal/ longitudinal	transversal	transversal	1	_	_	
JTA	W72/48	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	_	_	
	K28/15	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	_	_	
	K38/17	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	_	_	
	K40/25	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	-	_	
	K50/30	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	_	_	
	K53/34	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	_	_	
	K72/48	1	transversal/ longitudinal	transversal/ longitudinal	_	-	1	Ι	_	
JZA	K41/22	1	-	_	_	_	-	_	1	
	W29/20	1	-	_	_	_	-	_	1	
JXA	W38/23	1	transversal	transversal	transversal	transversal	-	_	1	
57.7 1	W53/34	1	transversal	transversal	transversal	transversal	-	-	1	

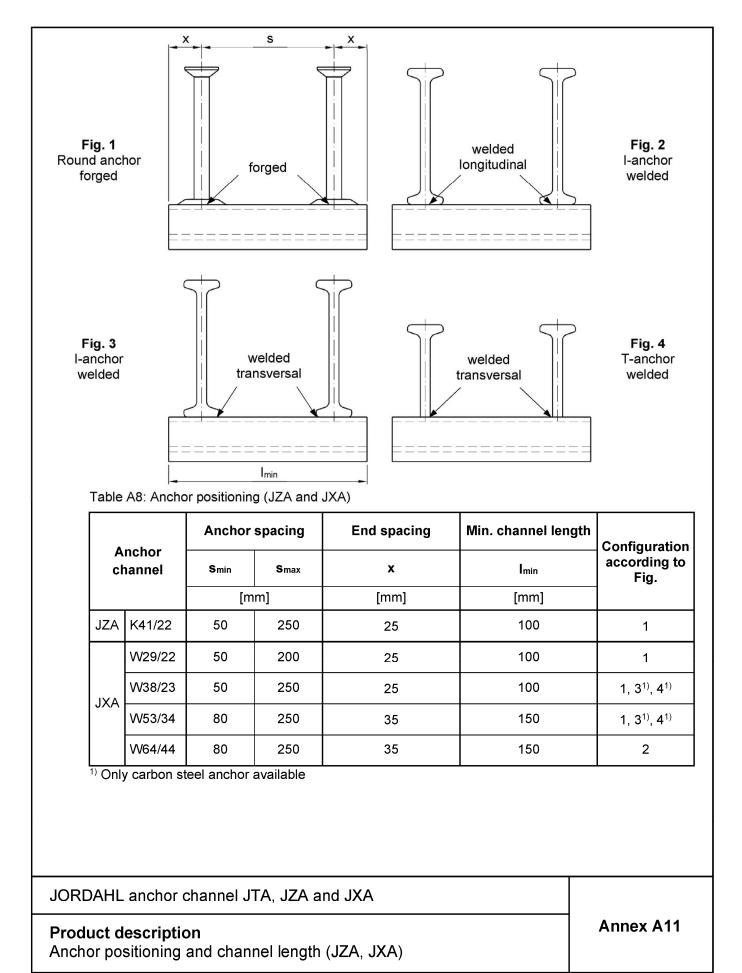
JORDAHL anchor channel JTA, JZA and JXA


Product description

Overview – anchor and channel bolt types

Page 15 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt



Z71494.22

Page 16 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

٨٣	nchor		Channel		Dimensi	on [mm]
	annel	Fig.	bolt	b _{cbo,1}	b _{cbo,2}	t cbo	d
						4,5	6
	K28/15	1	JD	11.0	22.4	4,5	8
	K20/15		JD	11,2	22,4	5,0	10
						6,5	12
						6,0	10
	K38/17	1	JH	16,5	30,5	7,0	12
						8,0	16
	K40/25			14,0		8,0	10
	W40/22	2	JC	14,0	32,0	8,0	12
	W40+			17,0		11,0	16
	W40/22	3	JKC	16,8	32,7	8,0	12
T ^	W40+	3	31(0	10,0	52,7	8,0	16
ΤA	K50/30			17,0		9,0	10
	W50/30 W50+			17,0		10,0	12
	K53/34	2	JB	17,5	41,5	13,0	16
	W53/34 W55/42			20,5		14,5	20
	W50/30			17,0		12,0	16
	W50+ W53/34	З	JKB	20,5	41,5	13,5	20
	W55/42	2	JB	24,5	41,5	18,5	24
				25,0		14,0	20
	K72/48	2	JA	25,0	500	20,0	24
	W72/48	2	JA	28,0	58,0	20,0	27
				31,0		20,0	30

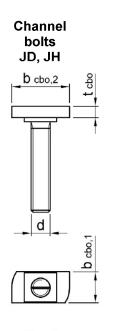
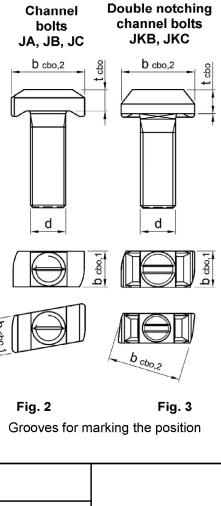



Fig. 1

JORDAHL anchor channel JTA, JZA and JXA

Product description Types of channel bolts – geometry

۸	nchor		Channel	C)imensi	on [mm		Serrated	Serrated
	annel	Fig.	bolt	b _{cbo,1}	b _{cbo,2}	t cbo	d	channel bolts JXD, JXH, JXB, JXE	channel bolts JZS
JZA	K41/22	2	JZS	10.5	34,5	9,0	12	b cbo,2	b cbo,2
JZA	N4 1/22	2	JZS	19,5	34,5	9,0 ¹⁾	16		+
	M/20/20	4		12.5	22.0	6,5	10	┃ └─╤═╤╤┛──┼	
	W29/20	1	JXD	13,5	22,0	6,5	12		
	14/20/22	1	IVU	17.0	20 0	8,0	12		
JXA	W38/23		JXH	17,2	28,9	8,0	16		
JAA	W53/34	1	JXB	21.0	41,6	11,5	16		
	VV55/54		JVD	21,0	41,0	13,0	20		_d_
	W64/44	1	JXE	24.7	51.0	14,0	20		
	**04/44			24,7	51,0	16,0	24		
Value	for carbon	steel;	stainless ste	eel 7,0					

Grooves for marking the position

Fig. 2

Fig. 1

Table A11: Strength grades of channel bolts

Chann	el bolt	Carbon	steel 1)	Stainless steel ¹⁾		
Strengt	th grade ²⁾	4.6	8.8	50	70	
f _{uk}	[N]/mm2]	400	800	500	700	
f _{yk}	[N/mm²]	240	640	210	450	
Surface	e	electro hot-dip ga	plated, alvanized	-	_	

¹⁾ Materials according to Annex A3 to A4, Table A1

²⁾ Material properties according to EN ISO 898-1:2013

JORDAHL anchor channel JTA, JZA and JXA

Product description Types of channel bolts – geometry and material

hannel		Strength	l grade ¹⁾	
bolt	4.6	8.8	50	70
JD	1	_ ²⁾	1	1
JH	1	1	1	_ 2)
JC	1	1	1	1
JKC	_ 2)	1	_ 2)	1
JB	1	1	1	1
JKB	_ 2)	1	_ 2)	1
JA	1	1	1	_ ²⁾
JZS	_ 2)	1	1	_ ²⁾
JXD	_ 2)	1	_ 2)	_ 2)
JXH	_ 2)	1	_ 2)	1
JXB	_ 2)	1	_ 2)	1
JXE	_ 2)	1	_ ²⁾	_ 2)
	ot availab			

Specifications of intended use

Anchor channels and channel bolts subject to:

- Static and quasi-static tension, shear perpendicular to the longitudinal axis of the channel and shear in the direction of the longitudinal axis of the channel.
- Fatigue cyclic tension loading.
- Fire exposure for strength class C20/25 to C50/60.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C12/15 to C90/105 according to EN 206-1:2000.
- Cracked or uncracked concrete.

Service conditions (environmental conditions):

- Structures subject to dry internal conditions (anchor channels and channel bolts according to Annex A3 and A4, Table A1, column 1 – 5).
- Structures subject to internal conditions with usual humidity (e.g. kitchen, bath and laundry in residential buildings, exceptional or-permanent damp conditions and applications under water) (anchor channels and channel bolts according to Annex A3 and A4, Table A1, column 2 – 5).
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC III (anchor channels and channel bolts according to A4, Table A1, column 3 – 5).
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC IV (anchor channels and channel bolts according to A4, Table A1, column 4 – 5).
- According to EN 1993-1-4:2006 + A2:2015 relating to corrosion resistance class CRC V (anchor channels and channel bolts according to A4, Table A1, column 5).

Design:

- Anchor channels are designed under the responsibility on an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor channel and channel bolts are indicated on the design drawings (e.g. position of the anchor channel relative to the reinforcement or to supports).
- For static and quasi-static loading as well as fire exposure the anchor channels are designed in accordance with EOTA TR 047 "Design of Anchor Channels", March 2018 or EN 1992-4:2018.
- For fatigue loading the anchor channels are designed in accordance with EOTA TR 050 "Calculation Method for the Performance of Anchor Channels under Fatigue Cyclic Loading", June 2022.
- The characteristic resistances are calculated with the minimum effective embedment depth.

JORDAHL anchor channel JTA, JZA and JXA

Intended use Specifications

Installation:

- The installation of anchor channels is carried out by appropriately qualified personnel under the supervision of the person responsible for the technical matters on site.
- Use of the anchor channels only as supplied by the manufacturer without any manipulations, repositioning or exchanging of channel components.
- Cutting of anchor channels is allowed only if pieces according to Annex A10, Table A7 and Annex A11, Table A8 are generated including end spacing and minimum channel length and only to be used in dry internal conditions (Annex A3 and A4, Table A1, column 1). For anchor channels made of stainless steel there are no restrictions regarding corrosion resistance when using cut channel pieces, if cutting is done professionally and contamination of cutting edges with corroding material is avoided.
- Installation in accordance with the installation instructions given in Annexes B8 and B9.
- The anchor channels are fixed on the formwork, reinforcement or auxiliary construction such that no movement of the channels will occur during the time of laying the reinforcement and of placing and compacting the concrete.
- The concrete under the head of the anchors is properly compacted. The channels are protected from penetration of concrete into the internal space of the channel.
- Washer may be chosen according to Annex A3 and Annex A4 and provided separately by the user.
- Orientating the channel bolt (groove according to Annex A12 and Annex A13) perpendicular to the channel axis.
- The required installation torques given in Annex B5 and B6 must be applied and must not be exceeded.

JORDAHL anchor channel JTA, JZA and JXA

Intended use Specifications

Page 22 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

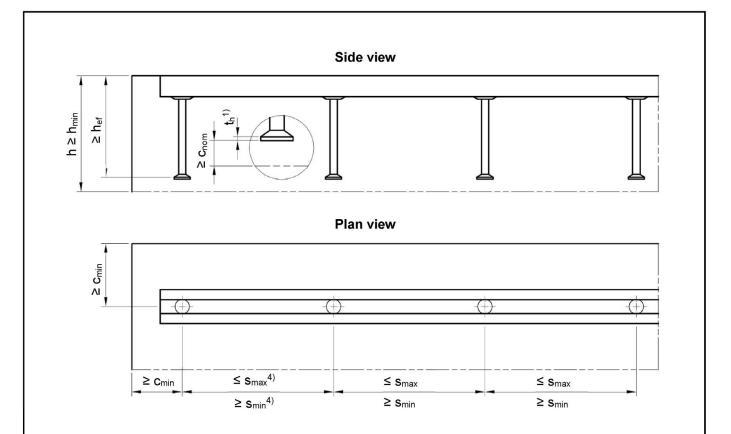


Table B1: Minimum effective embedment depth, edge distance and member thickness (JTA W)

					•	JTA	•		
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Min. effective embedment depth round anchors and l-anchors	h ef,min		79	91	94	106	155	175	179
Min. effective embedment depth,T-anchors	h ef,min		57	_ ³⁾	71	_ ³⁾	76	84	_ ³⁾
Min. edge distance round anchors and l-anchors	C _{min}]_	50	50	75	75	100	100	150
Min. edge distance T-anchors	C _{min}		50	_ 3)	50	_ 3)	75	75	_ 3)
Min. member thickness round anchors and I-anchors	h _{min}		90	102	105	118	170	191	195
Min. member thickness T-anchors	h _{min}		95	_ 3)	100	_ ³⁾	110	130	_ 3)
Min. member thickness in general	\mathbf{h}_{min}				h _{ef} ⊦	⊦ t _h ¹⁾ + c _r	10m ²⁾		
 th according to Annex A7, Ta c_{nom} according to EN 1992-1- Product not available s_{min}, s_{max} according to Annex 	1:2004 +	- A(C:2010			\8			

JORDAHL anchor channel JTA, JZA and JXA

Intended use

Installation parameters for anchor channels (JTA W)

Table B2: Minimum effective embedment depth, edge distance and member thickness (JTA K)

					J٦	ΓA		
Anchor channel	Anchor channel					K50/30	K53/34	K72/48
Min. effective embedment depth round anchors and l-anchors	$\mathbf{h}_{ef,min}$		45	76	79	94	155	179
Min. edge distance round anchors and l-anchors	Cmin	[mm]	40	50	50	75	100	150
Min. member thickness round anchors and I-anchors	\mathbf{h}_{min}]_	55	87	90	105	170	195
Min. member thickness in general	\mathbf{h}_{min}				h _{ef} + t _h ¹⁾	+ C _{nom} ²⁾		

¹⁾ t_h according to Annex A7, Table A4 and Annex A8, Table A5

²⁾ c_{nom} according to EN 1992-1-1:2004 + AC:2010

Table B3: Minimum effective embedment depth, edge distance and member thickness (JZA and JXA)

			JZA		J	KA	
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44
Min. effective embedment depth round anchors and l-anchors	h _{ef,min}		75	78	95	155	179
Min. effective embedment depth T-anchors	h _{ef,min}		_ 3)	_ 3)	54	76	_ 3)
Min. edge distance round anchors and l-anchors	Cmin	 	50	50	75	100	100
Min. edge distance T-anchors	Cmin	[mm]	_ ³⁾	_ ³⁾	50	100	_ 3)
Min. member thickness round anchors and l-anchors	\mathbf{h}_{min}		120	120	120	190	210
Min. member thickness T-anchors	\mathbf{h}_{min}		_ ³⁾	_ ³⁾	100	110	_ ³⁾
Min. member thickness in general	h _{min}			h _{ef} ·	+ t _h ¹⁾ + c _r	10m ²⁾	

¹⁾ t_h according to Annex A7, Table A4 and Annex A8, Table A5

²⁾ c_{nom} according to EN 1992-1-1:2004 + AC:2010

³⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

Intended use

Installation parameters for anchor channels (JTA K, JZA and JXA)

					Insta	allation torque 1	(inst ⁴⁾
		Channel bolt		Min. spacing of the channel	General ²⁾ T _{inst,g}		steel ³⁾
Ancho	or channel	Туре	d	bolt S _{min,cbo}	Steel 4.6; 8.8 ¹⁾		Steel 8.8 ¹⁾
			[mm]	[mm]		[Nm]	
			6	30	3	3	8
	K 20/4 E		8	40	8	8	20
	K28/15	JD	10	50	13	15	40
			12	60	15	25	70
			10	50	15	15	40
	K38/17	JH	12	60	25	25	70
			16	80	40	65	180
	K40/25		10	50	15	15	40
	W40/22	JC	12	60	25	25	70
	W40+		16	80	45	65	180
	W40/22	ЈКС ЈВ	12	-	-	-	70
	W40+		16	-	-	-	180
	1/ = 0/00		10	50	15	15	40
	K50/30 W50/30		12	60	25	25	70
	W50+		16	80	60	65	180
JTA		JB	20	100	75	130	360
			10	50	15	15	40
	K53/34	JB	12	60	25	25	70
	W53/34		16	80	60	65	180
			20	100	120	130	360
	W50/30 W50+	ЈКВ	16	-	-	-	180
	W53/34		20	-	-	-	360
			10	50	15	15	40
			12	60	25	25	70
	W55/42	JB	16	80	60	65	180
			20	100	120	130	360
			24	120	200	230	620
			20	100	120	130	360
	K72/48	14	24	120	200	230	620
	W72/48	JA	27	135	300	340	900
			30	150	380	460	1200
	ials accordi ding to Ann			\13 and A14			

JORDAHL anchor channel JTA, JZA and JXA

Intended use

Installation parameters of channel bolts (JTA)

		Cha	nnol		Installation torque T _{inst} ⁴⁾					
	Chai bo		Min enacing		General ²⁾ T _{inst,g}		steel ³⁾ st,s			
Anchoi	r channel	nnel Type		bolt Smin,cbo	Steel 4.6; 8.8 ¹⁾ Stainless steel 50; 70 ¹⁾	Steel 4.6 ¹⁾	Steel 8.8 ¹⁾ Stainless steel 70 ¹⁾			
			[mm]	[mm]		[Nm]				
JZA	K41/22	JZS 12		60	70	70	70			
JZA	r\41/22	JZ3	16	80	130	130	130			
	W29/20	JXD	10 50		30	_ ⁵⁾	40			
	VVZ9/20	JVD	12	60	70	_ ⁵⁾	70			
	14/20/02		12	60	70	_ ⁵⁾	70			
17.4	W38/23	JXH	16	80	120	_ 5)	180			
JXA	ME2/24		16	80	180	_ 5)	180			
	W53/34	JXB	20	100	300	_ 5)	360			
		IVE	20	100	300	_ 5)	360			
	W64/44	JXE	24	120	350	_ 5)	450			

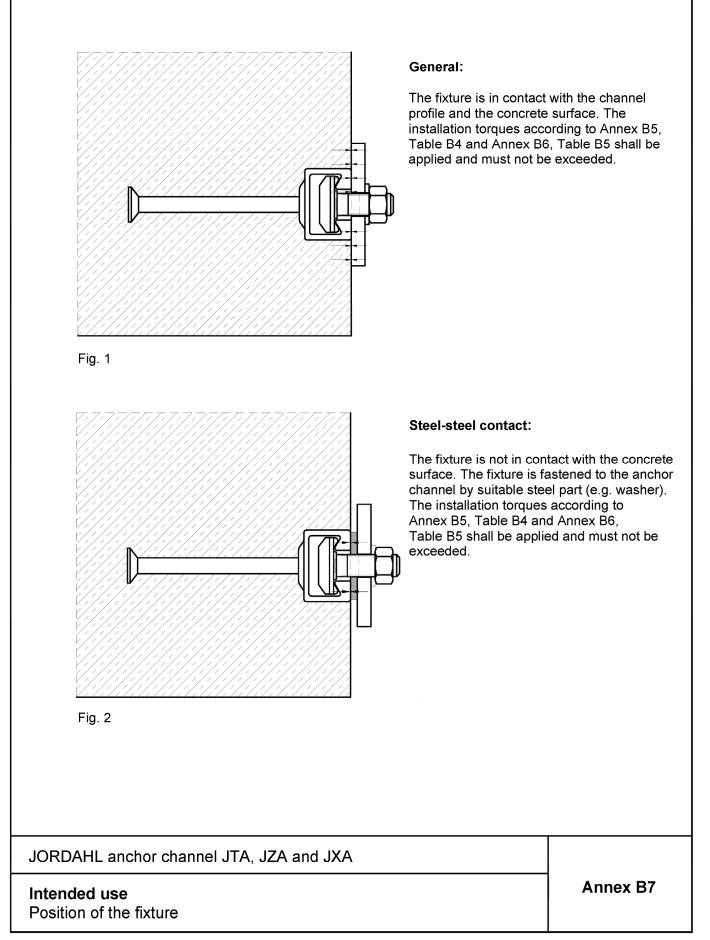
¹⁾ Materials according to Annex A13 and A14

²⁾ According to Annex B7, Fig. 1

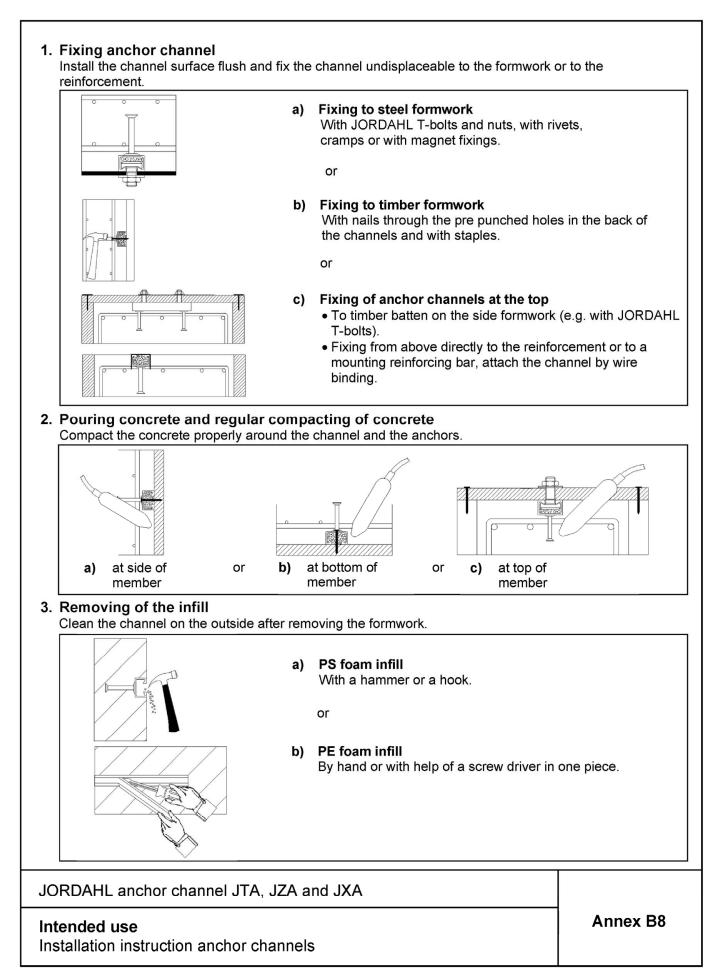
³⁾ According to Annex B7, Fig. 2

⁴⁾ T_{inst} must not be exceeded

⁵⁾ Product not available


JORDAHL anchor channel JTA, JZA and JXA

Intended use Installation parameters of channel bolts (JZA and JXA)


Page 26 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt



4. Fastening the JORDAHL T-bolt to the JORDAHL anchor channel

	A						JTA			
Characteristic resistance N _{Rk,s,a} [kN] 20,0 30,0 32,0 39,0 56,0 103,0 102,0 Partial factor γ_{Ms}^{1} Image: Steel failure: Connection between anchor and channel 1,8 Image: Steel failure: Connection between anchor and channel Image: Steel failure: Connection between anchor and channel 39,0 55,0 103,0 100,0 Characteristic resistance N _{Rk,s,c} [kN] 20,0 29,0 31,0 39,0 55,0 103,0 100,0 Partial factor $\gamma_{Ms,ca}^{11}$ Image: Steel failure: Local flexure of channel bolts for N _{Rk,s,l} [kN] 20,0 29,0 31,0 39,0 55,0 103,0 100,0 Spacing of channel bolts for N _{Rk,s,l} $\gamma_{Ms,ca}^{11}$ 179 79 98 98 105 109 144 Characteristic resistance N ⁰ _{Rk,s,l} [kN] 38,0 38,0 38,0 38,0 72,0 119,0 120,0 Partial factor $\gamma_{Ms,l}^{11}$ Image: Steel failure: Ste	Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
resistance N _{Rk,s,a} [KN] 20,0 30,0 32,0 39,0 56,0 103,0 102,0 Partial factor γ_{Ms}^{1} 1,8 1,8 1,8 103,0 102,0 100,0 144 100,0 100,0 100,0 144 100,0 100,0 100,0	Steel failure: Ancho	r						1		
Steel failure: Connection between anchor and channelCharacteristic resistanceNRk,s,c[KN]20,029,031,039,055,0103,0100,0Partial factor $\gamma_{Ms,ca}^{11}$ $20,0$ $29,0$ $31,0$ $39,0$ $55,0$ $103,0$ $100,0$ Partial factor $\gamma_{Ms,ca}^{11}$ $1,8$ Steel failure: Local flexure of channel lipsSpacing of channel bolts for NRk,s,I $S_{I,N}$ [mm] 79 79 98 98 105 109 144 Characteristic resistance $N^0_{Rk,s,I}$ [kN] $38,0$ $38,0$ $38,0$ $38,0$ $72,0$ $119,0$ $120,0$ Partial factor $\gamma_{Ms,I}^{(1)}$ 1 1 1 1 1		N _{Rk,s,a}	[kN]	20,0	30,0	32,0	39,0	56,0	103,0	102,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Partial factor	γMs	,1)				1,8			
resistance N _{Rk,s,c} [kN] 20,0 29,0 31,0 39,0 55,0 103,0 100,0 Partial factor $\gamma_{Ms,ca}^{1}$ 1,8 1,8 1,8 1,8 Steel failure: Local flexure of channel lips 51,0 109,0 144 Spacing of channel bolts for N _{Rk,s,l} SI,N [mm] 79 79 98 98 105 109 144 Characteristic resistance N ⁰ _{Rk,s,l} [kN] 38,0 38,0 38,0 38,0 72,0 119,0 120,0 Partial factor $\gamma_{Ms,l}^{(1)}$ γ_{M	Steel failure: Conne	ction betv	veen an	chor and	channel					
Steel failure: Local flexure of channel lipsSpacing of channel bolts for $N_{Rk,s,l}$ $S_{I,N}$ $[mm]$ 79799898105109144Characteristic resistance $N^0_{Rk,s,l}$ $[kN]$ 38,038,038,038,072,0119,0120,0Partial factor $\gamma_{Ms,l}^{1}$ \cdots \cdots $1,8$ \cdot \cdot \cdot		N _{Rk,s,c}	[kN]	20,0	29,0	31,0	39,0	55,0	103,0	100,0
Spacing of channel bolts for N _{Rk,s,l} s _{l,N} [mm] 79 79 98 98 105 109 144 Characteristic resistance N ⁰ _{Rk,s,l} [kN] 38,0 38,0 38,0 38,0 38,0 72,0 119,0 120,0 Partial factor $\gamma_{Ms,l}^{(1)}$ $=$ </td <td>Partial factor</td> <td>γMs,</td> <td>ca¹⁾</td> <td></td> <td></td> <td></td> <td>1,8</td> <td></td> <td></td> <td></td>	Partial factor	γMs,	ca ¹⁾				1,8			
bolts for N _{Rk,s,l} S _{l,N} [mm] 79 79 90 90 90 105 109 144 Characteristic resistance N ⁰ _{Rk,s,l} [kN] 38,0 38,0 38,0 38,0 38,0 72,0 119,0 120,0 Partial factor $\gamma_{Ms,l}^{(1)}$ 1 1 <th1< th=""> 1 1</th1<>	Steel failure: Local f	lexure of	channe	l lips						
resistance N ^o _{RK,S,I} [KN] 38,0 38,0 38,0 38,0 72,0 119,0 120,0 Partial factor $\gamma_{MS,I}^{(1)}$ 1,8 1,8 1,8 1,8 1,8		Si,N	[mm]	79	79	98	98	105	109	144
		N ⁰ Rk,s,I	[kN]	38,0	38,0	38,0	38,0	72,0	119,0	120,0
¹) In absence of other national regulations	Partial factor	γMs	, _I 1)				1,8	•		
			Ū							

Characteristic resistances under tension load - steel failure anchor channels (JTA W)

Anchor channel			JTA								
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48			
Steel failure: Anchor											
Characteristic resistance	N _{Rk,s,a}	[kN]	13,0	18,0	20,0	32,0	56,0	102,0			
Partial factor	γm	s ¹⁾			1	,8					
Steel failure: Connec	tion betv	veen an	chor and	channel							
Characteristic resistance	N _{Rk,s,c}	[kN]	9,0	18,0	20,0	31,0	55,0	100,0			
Partial factor	γMs,	ca ¹⁾			1	,8					
Steel failure: Local fl	exure of	channe	l lips								
Spacing of channel bolts for N _{Rk,s,I}	SI,N	[mm]	56	76	80	100	107	144			
Characteristic resistance	N ⁰ _{Rk,s,l} [kN]		9,0	18,0	20,0	31,0	55,0	100,0			
Partial factor	γMs	, 1)	1,8								

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under tension load – steel failure anchor channels (JTA K)

Annex C2

			JZA		J	ХА					
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44				
Steel failure: Ancho	or		I	1	1	I	I				
Characteristic			25,4 ²⁾	25,4 ²⁾	31,4 ²⁾	57,1 ²⁾	115,0 ²⁾				
resistance	N _{Rk,s,a}	[kN]	25,4 ³⁾	- 4)	31,4 ³⁾	57,1 ³⁾	- ⁴⁾				
Partial factor	γm	ls ¹⁾ 1,8									
Steel failure: Conne	ection bet	veen ar	hchor and	l channel							
Characteristic			14,5 ²⁾	19,3 ²⁾	35,3 ²⁾	72,6 ²⁾	106,3 ²⁾				
resistance	N _{Rk,s,c}	[kN]	18,0 ³⁾	- ⁴⁾	39,0 ³⁾	49,0 ³⁾	_ ⁴⁾				
Partial factor	γMs,	ca ¹⁾			1,8						
Steel failure: Local	flexure of	channe	el lips								
Spacing of channel polts for $N_{Rk,s,l}$	SI,N	[mm]	82	58	76	105	128				
Characteristic			14,5 ²⁾	19,3 ²⁾	35,3 ²⁾	72,6 ²⁾	106,3 ²⁾				
resistance	N ⁰ Rk,s,I	[kN]	18,0 ³⁾	_ 4)	42,8 ³⁾	64,6 ³⁾	_ 4)				
Partial factor	γMs	$\gamma_{Ms,I}$		1,8							
In absence of other r Carbon steel Stainless steel Product not availabl		gulation	S								

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under tension load – steel failure anchor channels (JZA and JXA)

Annex C3

								ТА			
Anchor channel				W40/22	W40+	- W50/	30 W	50+ \	N53/34	W55/42	W72/48
Steel failure: Fle	xure of cha	nnel		I	1	1	I	I			
Characteristic flexural resistance of	Round anchor, I-anchor	MRk,s,flex	[Nm]	1406	1406	6 283	30 2	830	3373	6447	8593
channel	T-anchor			703	_ 2)	14	6 ·	_ 2)	2297	4454	_ ²⁾
Characteristic flexural resistance of	Round anchor, I-anchor	M _{Rk,s,flex}	[Nm]	1138	1138	3 175	56 1	756	3373	_2)	_2)
channel, notching bolt	T-anchor			703	_ 2)	14	6	_ 2)	2297	_ 2)	_2)
Partial factor		γMs,fl	ex ¹⁾		•	•	. 1	,15		•	•
Anchor channel							ТА				
Anchor channel				K28/15	K38/17) K53/	/34 K72	2/48	
Steel failure: Fle	xure of cha	nnel									
Characteristic flexural resistance of channel	Round anchor, I-anchor	M _{Rk,s,flex}	[Nm]	317	580	1071	1673	298	84 86	17	
Ghannel		γMs,fl	ex ¹⁾			1	,15				
Partial factor											
	ther nationa		ns								

Anchor channel K41/22 W29/20 W38/23 W53/34 W64/44 Steel failure: Flexure of channel	Steel failure: Fle Characteristic	exure of cha	annel		K41/22	W29/20	W38/23	W53/34	W64/44
Characteristic flexural resistance of channelRound 	Characteristic	Round	annel	I					
Characteristic flexural resistance of channelanchor I-anchorMRk,s,flex $[Nm]$ 629^{-2} 608 1052^{-3} 3247^{-3} -57^{-3} In anchorI-anchorIn anchorImage: MRk,s,flex $[Nm]$ -5^{-5} -5^{-5} 1581 4147 7078^{-5} Partial factorYMs,flex γ Ms,flex -5^{-5} -5^{-5} 832 2476 -5^{-5} Partial factorYMs,flex γ Ms,flex $1,15$ $1,15$ Partial factorYMs,flex -765 Nm $1,15$ Value for carbon steel; stainless steel - 765 Nm $Value$ for stainless steel; carbon steel - 1581 Nm $Value$ for stainless steel; carbon steel - 4147 Nm									
flexural resistance of channelI-anchor $M_{Rk,s,flex}$ $[Nm]$ -5^{5} -5^{5} 1581 4147 7078 T-anchorT-anchor -5^{5} -5^{5} 832 2476 -5^{5} Partial factor $\gamma_{Ms,flex}^{11}$ $1,15$ $1,15$ Partial factorValue for carbon steel; stainless steel - 765 NmValue for stainless steel; carbon steel - 1581 NmValue for stainless steel; carbon steel - 4147 Nm		anchor			629 ²⁾	608	1052 ³⁾	3247 ⁴⁾	_ 5)
T-anchor $-^{5}$ $-^{5}$ 832 2476 $-^{5}$ Partial factor $\gamma_{Ms,flex}^{11}$ $1,15$ $1,15$ In absence of other national regulations Value for carbon steel; stainless steel – 765 Nm Value for stainless steel; carbon steel –1581 Nm Value for stainless steel; carbon steel –4147 Nm $-^{5}$	esistance of	I-anchor	M _{Rk,s,flex}	[Nm]	_ 5)	_ ⁵⁾	1581	4147	7078
⁾ In absence of other national regulations ⁾ Value for carbon steel; stainless steel – 765 Nm ⁾ Value for stainless steel; carbon steel –1581 Nm ⁾ Value for stainless steel; carbon steel –4147 Nm	channei	T-anchor			_ 5)	_ 5)	832	2476	_ 5)
⁾ Value for carbon steel; stainless steel – 765 Nm ⁾ Value for stainless steel; carbon steel –1581 Nm ⁾ Value for stainless steel; carbon steel –4147 Nm	Partial factor		γMs,fl	ex ¹⁾			1,15		

Annex C5

Channel bolt						JD,	JH, JC,	JKC, JE	3, JKB, .	JA		
Thread diamete	r			М6	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure: Ch	annel	bolt						·	·			•
			4 .6 ¹⁾	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,4
Characteristic	N	[kN]	8.8 ¹⁾	16,1	29,3	46,4	67,4	125,6	196,0	282,4	367,2	448,
resistance ²⁾	N _{Rk,s}		50 ¹⁾	10,1	18,3	29,0	42,2	78,5	122,5	176,5	229,5	280,
			70 ¹⁾	14,1	25,6	40,6	59,0	109,9	171,5	247,1	321,3	392,
		I	4.6 ¹⁾				•	2,00	•			
Partial factor		3)	8.8 ¹⁾					1,50				
	γ _Μ	3) Is	50 ¹⁾					2,86				
70 ¹⁾								1,87				
⁾ Materials accord ¹⁾ In conformity to ¹⁾ In absence of ot Table C8: Charac Channel bolt	EN ISC her nat) 898-1 ional re	:2013 gulation	S		– Steel		of channe		JZA an	d JXA)	
Thread diamete	r			M12	 M16	M10	M12	M16	M20	M24	-	
Steel failure: Ch		bolt							11120			
	8.8 ¹⁾	48,9	98,9	46,4	67,4	125,6	196,0	282,4				
Characteristic resistance ²⁾	N _{Rk,s}	[kN]	50 ¹⁾	42,2	78,5	_ 5)	_ 5)	_ 5)	_ 5)	_ 5)		

1,50

2,86

1,87

¹⁾ Materials according to Annex A2 to A4

 $\gamma_{Ms}{}^{3)}$

²⁾ In conformity to EN ISO 898-1:2013

³⁾ In absence of other national regulations

⁴⁾ Available only as JXH and JXB

⁵⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

Performance

Partial factor

Characteristic resistances under tension load – steel failure channel bolts

8.8¹⁾

50¹⁾

Annex C6

		racteristic res						JTA								
Anchor c	hanne	el l			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48					
Concrete	failur	e: Pullout														
Character resistance cracked		Round anchor	N _{RK,p}	[kN]	10,8	17,3 (10,8) ¹⁾	15,9	19,8	29,7	38,4	50,9					
concrete C12/15		I-anchor T-anchor			23,4	24,8 - ³⁾	- 29,2	29,7 - ³⁾	39,6	52,2	46,4 - ³⁾					
Character resistance	e in	Round anchor			15,1	24,2 (15,1) ¹⁾	22,3	27,7	41,6	53,8	71,3					
uncrackec concrete	1	I-anchor	N _{Rk,p}	[kN]	32,8	34,7	40,9	41,6	- 55,4	73,1	65,0					
C12/15		T-anchor				_ ³⁾		- ³⁾			_ ³⁾					
		C20/25 C25/30	-		1,67 2,08											
Factor of N _{Rk,p} = N _{Rk,p} (C12/15) $\cdot \psi_c$		C30/37	1					2,50								
		C35/45						2,92								
		C40/50	ψο	[-]				3,33								
		C45/55						3,75								
		C50/60						4,17								
	C55/67						4,58									
		≥C60/75						5,00								
Partial fac	tor		γMp ²	2)				1,5								
Concrete	failur	e: Concrete	cone													
	Rour	d, I-anchor k _{cr,N}		[-]	7,9	8,0	8,1	8,2	8,7	8,9	8,9					
Product	T-an				7,5	_ 3)	7,7	_ ³⁾	7,8	7,9	- ³⁾					
factor k₁		nd, I-anchor	k ucr,N	[-]	11,2	11,5	11,5	11,7	12,4	12,6	12,7					
Partial fac	∣T-an tor	cnor	γM		10,7	_ 3)	11,0	<u> </u>	11,2	11,3	- ³⁾					
		e: Splitting	ΥM ΥM	c [_] ′				1,5								
Charact.		nd, I-anchor			237	273	282	318	465	525	537					
edge dist.	T-an	chor	C _{cr,sp}	[mm]	171	_ 3)	213	_ 3)	228	252	_ 3)					
Charact. spacing	Rour T-an	nd, I-anchor	Scr,sp	[mm]	474	546	564	636 _ ³⁾	930	1050	1074					
Partial fac		CHOI	γΜε	2)	342	/	426	1,5	456	504	/					
¹⁾ Values	in bra ence o	ckets for stai f other natior available	nless s	teel ar				.,•								
JORDA	HL ai	nchor chan	inel JT	Ā, Jz	ZA and J	XA										
	eristi	e c resistanc nels (JTA V		der te	ension lo	ad – con	crete fail	ure		Annex	c C7					

$ \begin{array}{ c c c c c c } \hline Concrete failure: Pullout \\ \hline Characteristic resistance in cracked concrete C12/15 \\ \hline l-anchor \\ resistance in uncracked concrete C12/15 \\ \hline l-anchor \\$							J.	ТА					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	or chann	lei			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ete failı	ıre: Pullout			I	1	1	1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				[kN]	6,7	14,7	10,8	15,9	29,7	50,9			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		15 I-anchor	ΙΝΚΚ,Ρ		11,7	11,7	14,0	21,1	25,7	46,4			
Uncracked concrete C12/15 I-anchor I 16,4 16,4 19,7 29,5 36,0 Factor of NRk,p = NRk,p (C12/15) · ψ C20/25 C35/45 C40/50 (C45/55 C50/60 C55/67 \geq C60/75 I-anchor 16,4 16,4 19,7 29,5 36,0 Product factor Product factor C0/50 C45/57 ψ I-anchor	nce in		Neko	[kN]	9,4	20,6	15,1	22,3	41,6	71,3			
Factor of NRk,p = NRk,p (C12/15) · ψ c		15 I-anchor		[[(()]]	16,4	16,4	19,7	29,5	36,0	65,0			
Factor of NRk.p C30/37 2,50 $(C12/15) \cdot \psi_{C}$ C40/50 ψ_{C} [-] 3,33 $(C12/15) \cdot \psi_{C}$ C45/55 3,75 3,75 $(C12/15) \cdot \psi_{C}$ C55/67 4,58 3,75 $C50/60$ $200/75$ 5,00 4,58 Partial factor $\gamma_{Mp}^{(1)}$ 1,5 5,00 Product factor k1 Round, I- anchor k.cr,N [-] 7,2 7,8 7,9 8,1 8,7 Partial factor Round, I- anchor k.ucr,N [-] 10,3 11,2 11,5 12,4 Partial factor $\gamma_{Mc}^{(1)}$ 1,5 5 5 5 1,4 1,5 Concrete failure: Concrete cone Product factor k1 Round, I- k.ucr,N [-] 10,3 11,2 11,5 12,4 Partial factor Product failure: Splitting Charact. anchor c.cr,sp [mm] 135 228 237 282 465 Charact. anchor Ser,sp [mm] 270		C20/25		[-]	1,67								
Factor of NRk,p = NRk,p (C12/15) · ψ_c		C25/30					2,	08					
Racho of NRk,p = NRk,p (C12/15) · ψc C40/50 ψc [-] 3,33 (C12/15) · ψc C45/55 3,75 3,75 C50/60 C55/67 4,17 ≥C60/75 2000 4,17 Partial factor γ_{Mp}^{10} 1,5 Concrete failure: Concrete cone Product factor k ₁ Round, I- anchor k _{cr,N} [-] 7,2 7,8 7,9 8,1 8,7 Partial factor γ_{Mp}^{10} 11,2 11,2 11,5 12,4 Partial factor γ_{Mc}^{10} 1,5 228 237 282 465 Charact. edge dist. anchor scr,sp [mm] 135 228 237 282 465 Charact. spacing anchor scr,sp [mm] 270 456 474 564 930 Partial factor γ_{Msp}^{10} 1,5 1.5 1 1 1 1 1 1 In absence of other national regulations 1 1 5 1 1 5		C30/37					2,	50					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	of	C35/45]				2,	92					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$N_{Rk,p} = N_{Rk,p}$	C40/50	ψο				3,	33					
C 55/67 ≥C60/75 $4,58$ Partial factor γ_{Mp}^{1} $1,5$ Concrete cone Product factor k1 Round, I- anchor kcr,N [-] $7,2$ $7,8$ $7,9$ $8,1$ $8,7$ Partial factor k1 Round, I- anchor kucr,N [-] $10,3$ $11,2$ $11,5$ $12,4$ Partial factor γ_{Mc}^{1} $10,3$ $11,2$ $11,5$ $12,4$ Partial factor Charact. edge dist. anchor Cor,sp [mm] 135 228 237 282 465 Charact. Round, I- anchor $c_{cr,sp}$ [mm] 270 456 474 564 930 930 Partial factor γ_{Msp}^{11} 1.5 In absence of other national regulations		C45/55	1				3,	75					
Partial factor γ_{Mp}^{1} $5,00$ Partial factor γ_{Mp}^{1} $1,5$ Concrete failure: Concrete coneProduct factor k1Round, I- anchorkcr,N[-] $7,2$ $7,8$ $7,9$ $8,1$ $8,7$ Product factor k1Round, I- anchorkuor,N[-] $10,3$ $11,2$ $11,2$ $11,5$ $12,4$ Partial factor γ_{Mc}^{1} $1,5$ Concrete failure: Splitting γ_{Mc}^{1} $1,5$ 228 237 282 465 Charact. edge dist.Round, I- anchor $c_{cr,sp}$ [mm] 135 228 237 282 465 Charact. spacingRound, I- anchor $s_{cr,sp}$ [mm] 270 456 474 564 930 Partial factor γ_{Msp}^{1} $1,5$ 1.5 1.5 1.5 1.5		C50/60	1				4,	17					
Partial factor γ_{Mp}^{11} 1,5Concrete failure: Concrete coneProduct factor k1Round, I- anchorkcr,N[-]7,27,87,98,18,7Round, I- anchorkucr,N[-]10,311,211,211,512,4Partial factor γ_{Mc}^{11} 1,5Concrete failure: SplittingCharact. edge dist.Round, I- anchorcor,sp[mm]135228237282465Charact. spacingRound, I- anchorscr,sp[mm]270456474564930Partial factor γ_{Msp}^{11} 1,5		C55/67]				4,	58					
Concrete failure: Concrete coneProduct factor k1Round, I- anchork _{er,N} [-]7,27,87,98,18,7Round, I- anchorkuer,N[-]10,311,211,211,512,4Partial factor $\gamma_{Mc}^{(1)}$ 1,5Concrete failure: SplittingCharact. edge dist.Round, I- anchorc _{er,sp} [mm]135228237282465Charact. spacingRound, I- anchors _{cr,sp} [mm]270456474564930Partial factor $\gamma_{Msp}^{(1)}$ 1,5		≥C60/75	1				5,	00					
Concrete failure: Concrete coneProduct factor k1Round, I- anchork _{er,N} [-]7,27,87,98,18,7Round, I- anchorkuer,N[-]10,311,211,211,512,4Partial factor $\gamma_{Mc}^{(1)}$ 1,5Concrete failure: SplittingCharact. edge dist.Round, I- anchorc _{er,sp} [mm]135228237282465Charact. spacingRound, I- anchors _{cr,sp} [mm]270456474564930Partial factor $\gamma_{Msp}^{(1)}$ 1,5	Partial factor			p ¹⁾			1	,5					
Product factor k1anchorKcr,N[-]7,27,87,98,18,7Round, I- anchorkucr,N[-]10,311,211,211,512,4Partial factor $\gamma_{Mc}^{(1)}$ 1,5Concrete failure: SplittingCharact. edge dist.Round, I- anchorc _{cr,Sp} [mm]135228237282465Charact. spacingRound, I- anchorscr,sp[mm]270456474564930Partial factor $\gamma_{Msp}^{(1)}$ 1,5In absence of other national regulations	ete failı	ire: Concrete	cone										
NoticeNoticeKucr,N[-]10,311,211,211,512,4Partial factor $\gamma_{Mc}^{(1)}$ 1,5Concrete failure: SplittingCharact. edge dist.Round, I- anchor $c_{cr,sp}$ [mm]135228237282465Charact. spacingRound, I- anchor $s_{cr,sp}$ [mm]270456474564930Partial factor $\gamma_{Msp}^{(1)}$ 1,5In absence of other national regulations			K cr,N	[-]	7,2	7,8	7,9	8,1	8,7	8,9			
Concrete failure: SplittingCharact. edge dist.Round, I- anchor $c_{cr,sp}$ [mm]135228237282465Charact. spacingRound, I- anchor $s_{cr,sp}$ [mm]270456474564930Partial factor $\gamma_{Msp}^{1)}$ 1,5In absence of other national regulations			k _{ucr,N}	[-]	10,3	11,2	11,2	11,5	12,4	12,7			
Charact. edge dist.Round, I- anchor $c_{cr,sp}$ [mm]135228237282465Charact. spacingRound, I- anchor $s_{cr,sp}$ [mm]270456474564930Partial factor $\gamma_{Msp}^{1)}$ 1,5In absence of other national regulations	Partial factor			1c ¹⁾	1,5								
edge dist.anchor $c_{cr,sp}$ [mm]135228237282465Charact. spacingRound, I- anchor $s_{cr,sp}$ [mm]270456474564930Partial factor γ_{Msp}^{1} 1,5In absence of other national regulations	ete failı	re: Splitting											
spacinganchorscr,sp[mm]270456474564930Partial factor $\gamma_{Msp}^{1)}$ 1,5In absence of other national regulations			C cr,sp	[mm]	135	228	237	282	465	537			
In absence of other national regulations			S cr,sp	[mm]	270	456	474	564	930	1074			
			γM	sp ¹⁾			1	•					
ORDAHL anchor channel JTA, JZA and JXA	ence of	other national	regulatio	ons									
ORDAHL anchor channel JTA, JZA and JXA													
	\ <u>Ц</u> ~~	chor chonn		174 ~	nd IVA								
	ant an		JIA,	JZH 9									
Performance A Characteristic resistances under tension load – concrete failure A			under	tensio	on load -	- concre	te failure	9		Annex (

Anabarah					JZA		J	(A	
Anchor ch	annei				K41/22	W29/20	W38/23	W53/34	W64/44
Concrete f	ailure: Pu	illout							
Characteris resistance		Round anchor			14,7	14,7	19,8	29,7	_ ²⁾
cracked co		I-anchor	N _{Rk,p}	[kN]	_ 2)	_2)	10.0		52,2
C12/15		T-anchor			_ 2)		19,8	39,6	_ ²⁾
Characteris resistance		Round anchor			20,5	20,5	27,7	41,6	_ ²⁾
uncracked		I-anchor	N _{Rk,p}	[kN]	2)	2)			73,1
C12/15		T-anchor			_ ²⁾	_2)	27,7	55,4	_ 2)
		C20/25					1,67		
		C25/30					2,08		
		C30/37					2,50		
Factor of		C35/45					2,92		
$N_{Rk,p} = N_{Rk,p}$ C40/50		Ψc	[-]			3,33			
(C12/15) · ψ _c	C45/55					3,75			
-		C50/60					4,17		
		C55/67					4,58		
		≥C60/75					5,00		
Partial facto	or		үм	p ¹⁾			1,5		
Concrete f	ailure: Co	oncrete cor							
	Round.	l-anchor			7,8	7,9	8,1	8,7	8,9
Product	T-ancho		k cr,N	[-]	_2)	_ ²⁾	7,4	7,8	_ ²⁾
factor k ₁	Round,	l-anchor	k ucr,N	[-]	11,1	11,2	11,5	12,4	12,7
	T-ancho	r			_2)	_2)	10,6	11,2	_ ²⁾
Partial facto	or		γ Ν	1c ¹⁾			1,5		
Concrete f	ailure: Sp	olitting							
Charact.	Round,	l-anchor		[mm]	225	234	285	465	537
edge dist.	T-ancho		C _{cr,sp}	[]	_ ²⁾	<u> </u>	162	228	_2)
Charact.		l-anchor	S cr,sp	[mm]	450	468	570	930	1074
spacing	T-ancho	r			_ ~)		324	456	- ²⁾
Partial facto		national reg		sp ¹⁾ S			1,5		
⁾ Product no				-					

Performance

Characteristic resistances under tension load – concrete failure anchor channels (JZA and JXA)

Table C12: Displacements under tension load (JTA W)

Anchor channel				JTA								
Anchor channel				W40+	W50/30	W50+	W53/34	W55/42	W72/48			
Tension load	N	[kN]	15,1	15,1	14,9	14,9	28,6	47,2	39,7			
Short-term displacement	δ _{N0}	[mm]	1,9	1,9	1,7	1,7	1,6	2,4	0,5			
Long-term displacement	δ _{N∞}	[mm]	3,8	3,8	3,4	3,4	3,1	4,8	1,0			

Table C13: Displacements under tension load (JTA K)

Anchor channel				JTA							
Anchor channel				K38/17	K40/25	K50/30	K53/34	K72/48			
Tension load	N	[kN]	3,6	7,1	7,9	12,3	21,8	39,7			
Short-term displacement	δ _{N0}	[mm]	0,3	0,3	0,4	0,4	0,5	0,5			
Long-term displacement	δ _{N∞}	[mm]	0,6	0,6	0,8	0,8	1,0	1,0			

Table C14: Displacements under tension load (JZA and JXA)

Anchenchennel			JZA		٦	(A	
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44
Tension load	N	[kN]	7,4	8,0	14,8	27.4	42,9
Short-term displacement	δηο	[mm]	0,6	0,4	1,3	1,4	1,5
Long-term displacement	δ _{N∞}	[mm]	1,2	0,8	2,6	2,8	3,0

JORDAHL anchor channel JTA, JZA and JXA

Performance

Displacements under tension load

• • • • • • • • • • •						JTA			
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/4
Steel failure: Anchor	r								
Characteristic resistance	V _{Rk,s,a,y}	[kN]	35,0	35,0	52,0	59,0	78,0	110,0	146,0
Characteristic resistance ⁵⁾	V _{Rk,s,a,x}	[kN]	12,2	18,0	19,0	23,5	34,2	_ 4)	- ⁴⁾
Partial factor	γMs	1)				1,5			
Steel failure: Connec	ction betw	een an	chor and o	channel					
Characteristic resistance	V _{Rk,s,c,y}	[kN]	35,0	35,0	52,0	59,0	78,0	110,0	146,0
Characteristic resistance ⁵⁾	V _{Rk,s,c,x}	[kN]	10,0	14,5	15,5	19,5	27,5	_ 4)	_ 4)
Partial factor	γMs,c	a ¹⁾				1,8			
Steel failure: Local fl	lexure of c	hanne	lips						
Spacing of channel bolts for $V_{Rk,s,l}$	SI,V	[mm]	79	79	98	98	105	109	144
Characteristic resistance	V ⁰ _{Rk,s,l,y}	[kN]	35,0	35,0	52,0	59,0	78,0	110,0	146,0
Partial factor	γMs,	₁ 1)				1,8			
Characteristic resistance ⁵⁾	V _{Rk,s,l,x}	[kN]	6,1 2,9	3)		13,2 ²⁾ 4,7 ³⁾		4)	_ 4)
Installation factor	γins	st	1,4 1,4			1,2 ²⁾ 1,4 ³⁾		-	_
Partial factor	γMs,I	x ¹⁾				1,8			
In absence of other n Carbon steel Stainless steel No performance asse If notching channel be	essed								
ORDAHL anchor c	channel J	TA. JZ	(A and J	K A					

Z71494.22

channels (JTA W)

					J	A		
Anchor channel			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48
Steel failure: Anchor	•		I					
Characteristic resistance	V _{Rk,s,a,y}	[kN]	13,0	18,0	20,0	32,0	56,0	102,0
Partial factor	γMs	1)			1	,5		
Steel failure: Connec	tion betw	een an	chor and o	channel				
Characteristic resistance	V _{Rk,s,c,y}	[kN]	9,0	18,0	20,0	31,0	55,0	100,0
Partial factor	γMs,c	a ¹⁾			1	,8		
Steel failure: Local fl	exure of c	hannel	lips					
Spacing of channel polts for V _{Rk,s,l}	SI,V	[mm]	56	76	80	100	107	144
Characteristic resistance	V ⁰ Rk,s,l,y	[kN]	9,0	18,0	20,0	31,0	55,0	100,0
Partial factor	γMs,	1)			1	,8	I	

Performance Characteristic resistances under shear load – steel failure anchor channels (JTA K)

resistance

Partial factor

Anchor channel			JZA		٦	(A	
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44
Steel failure: Ancl	nor						
Characteristic		FLAD	24,2 ²⁾	18,0 ²⁾	48,3 ²⁾	101,1 ²⁾	121,0 ²⁾
resistance	V _{Rk,s,a,y}	[kN]	28,0 ³⁾	_	42,6 ³⁾	91,7 ³⁾	_
Characteristic		FL-N 17	15,3 ²⁾	15,3 ²⁾	18,8 ²⁾	34,3 ²⁾	69,0 ²⁾

18,8³⁾

1,5

34,3 ³⁾

Steel failure: Connection between anchor and channel	

 $\gamma_{Ms}^{1)}$

[kN]

V_{Rk,s,a,x}

Characteristic	N-	[LN]]	24,2 ²⁾	18,0 ²⁾	48,3 ²⁾	101,1 ²⁾	121,0 ²⁾
resistance	V _{Rk,s,c,y}	[kN]	28,0 ³⁾	-	42,6 ³⁾	91,7 ³⁾	_
Characteristic	V	TLAU1	8,7 ²⁾	11,6 ²⁾	21,2 ²⁾	43,6 ²⁾	63,8 ²⁾
resistance	V _{Rk,s,c,x}	[kN]	10,8 ³⁾	-	23,5 ³⁾	29,4 ³⁾	_
Partial factor	γMs,c	a ¹⁾			1,8		

15,3³⁾

Steel failure: Local flexure of channel lips

Spacing of channel bolts for V _{Rk,s,l}	SI,V	[mm]	82	58	76	105	128		
Characteristic	V/0	[LN]]	24,2 ²⁾	18,0 ²⁾	48,3 ²⁾	101,1 ²⁾	121,0 ²⁾		
resistance	V ⁰ Rk,s,l,y	[kN]	28,0 ³⁾	_	42,6 ³⁾	91,7 ³⁾	_		
Partial factor	γMs,	1)	1,8						
Characteristic		[LN]]	10,0 ²⁾	12,0 ²⁾	19,4 ²⁾	33,8 ²⁾	64,5 ²⁾		
resistance	V _{Rk,s,l,x}	[kN]	10,7 ³⁾	-	11,9 ³⁾	22,8 ³⁾	-		
Installation factor	γinst				1,0				
Partial factor	γMs,I,	,x ¹⁾			1,8				

¹⁾ In absence of other national regulations

²⁾ Carbon steel

³⁾ Stainless steel

⁴⁾ No performance assessed

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under shear load – steel failure anchor channels (JZA and JXA)

						JTA			
Anchor channe			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Concrete failur	e: Pry-out		11			L		1	
Product factor		k ₈	2,0 (1,0) ²⁾	2,0	2,0	2,0	2,0	2,0	2,0
Partial factor		γ _{Mc} ¹⁾	(1,2)		1	1,5			
Concrete failur	e: Concrete ed	ge	1						
Product factor	cracked concrete	k cr,V	7,5 (7,0) ²⁾	7,5	7,5	7,5	7,5	7,5 (6,9) ²⁾	7,5
k ₁₂	uncracked concrete	k _{ucr,∨}	10,5 (9,8) ²⁾	10,5	10,5	10,5	10,5	10,5 (9,7) ²⁾	10,5
Partial factor		γ _{Mc} ¹⁾				1,5		·	
Table C19: Cha						ΓΑ			
Anchorobanna	J				JT	ГА			
			K28/15	K38/17	K40/25	K50/30	K53/34	K72/48	
Concrete failur	e: Pry-out								
Product factor		k ₈	1,0			2,0			
Partial factor		γ _{Mc} 1)			1	,5			
Concrete failur	e: Concrete ed	ge							
Product factor	cracked concrete	k cr,∨	4,5			7,5			
k ₁₂	uncracked concrete	k _{ucr,V}	6,3			10,5			
Partial factor		γ Mc ¹⁾			1	,5			
¹⁾ In absence of	omer national r	eguiatio	115						
JORDAHL an	chor channe	IJTA, .	JZA and	JXA					
JORDAHL an Performance Characteristic channels (JT/	e c resistances				crete failu	ure anch	or	Annex	C1

Table C20: Characteristic resistances under shear load – Concrete failure of anchor channel (JZA and JXA)

Ancherchenne	•		JZA		J)	(A	
Anchor channe				W29/20	W38/23	W53/34	W64/44
Concrete failur	e: Pry-out						-
Product factor		k ₈	2,0	2,0	2,0 (1,0) ²⁾	2,0	2,0
Partial factor		γ _{Mc} ²⁾			1,5		
Concrete failur	e: Concrete edç	je					
Product factor	cracked concrete	k _{cr,∨}	7,5	6,1	7,5 (5,6) ²⁾	7,5 (6,4) ²⁾	7,5
k ₁₂	uncracked concrete	k _{ucr,∨}	10,5	8,6	10,5 (7,9) ²⁾	10,5 (8,9) ²⁾	10,5
Partial factor		γ _{Mc} ¹⁾			1,5		

¹⁾ In absence of other national regulations

²⁾ Values in brackets for T-anchors

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under shear load – concrete failure anchor channels (JZA and JXA)

Channel bolt						JD	, JH, JC	, JKC, JI	B, JKB,	JA		
Thread diamete	er			M6	M8	M10	M12	M16	M20	M24	M27	M30
Steel failure: C	hannel	bolt										
			4.6 ¹⁾	4,8	8,8	13,9	20,2	37,7	58,8	84,7	110,2	134,
Characteristic			8.8 ¹⁾	8,0	14,6	23,2	33,7	62,8	98,0	141,2	183,6	224,
resistance ²⁾	V _{Rk,s}	[kN]	50 ¹⁾	6,0	11,0	17,4	25,3	47,1	73,5	105,9	137,7	168
			70 ¹⁾	8,4	15,4	24,4	35,4	65,9	102,9	148,3	192,8	235
			4.6 ¹⁾	6,3	15,0	29,9	52,4	133,2	259,6	449,0	665,8	889
Characteristic		[Nm]	8.8 ¹⁾	12,2	30,0	59,8	104,8 ³⁾	266,4 ⁴⁾	519,3	898,0	1331,5	1799
flexural resistance	W [°] Rk,s		50 ¹⁾	7,6	18,7	37,4	65,5	166,5	324,5	561,3	832,2	1124
			70 ¹⁾	10,7	26,2	52,3	91,7 ³⁾	233,1	454,4	785,8	1165,1	1574
			4.6 ¹⁾					1,67				
Dertial factor		5)	8.8 ¹⁾					1,25				
Partial factor	γν	1s ⁵⁾	50 ¹⁾					2,38				
			70 ¹⁾					1,56				
 Materials acco In conformity to In combination In combination In combination In absence of o 	o EN IS with ar with ar	O 898- Ichor cl Ichor cl	1:2013 hannel hannel	JTA K 2 JTA K 3				1				

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under shear load – steel failure channel bolts

Channel bolt				JZ	zs		JXD,	JXH, JX	B, JXE	
Thread diamet	er			M12	M16	M10	M12	M16	M20	M24
Steel failure: C	hannel	bolt					•			
			8.8 ¹⁾	33,7	62,8	23,2	33,7	62,8	98.0	141,2
Characteristic resistance ²⁾	V _{Rk,s}	[kN]	50 ¹⁾	25,3	47,1	_ 5)	_ 5)	_ ⁵⁾	_ 5)	_ 5)
			70 ¹⁾	_ 5)	_ 5)	_ 5)	35,4 ⁴⁾	65,9 ⁴⁾	102,9 ⁴⁾	_ ⁵⁾
		,s [Nm]	8.8 ¹⁾	104,8	266,4	59,8	104,8	266,4	519,3	898,0
Characteristic flexural	M ⁰ Rk,s		50 ¹⁾	65,5	166,5	_ 5)	_ 5)	_ 5)	_ ⁵⁾	_ 5)
resistance			70 ¹⁾	_ ⁵⁾	_ 5)	_ ⁵⁾	91,7 ⁴⁾	233,1 ⁴⁾	454,4 ⁴⁾	_ ⁵⁾
			8.8 ¹⁾				1,25	1		
Partial factor		s ³⁾	50 ¹⁾				2,38			
		70 ¹⁾	1,56							

³⁾ In absence of other national regulations
 ⁴⁾ Available only as JXH and JXB

⁵⁾ Product not available

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under shear load - steel failure channel bolts

A wahay ahayya'						JTA			
Anchor channel			W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Shear load	Vy	[kN]	13,9	13,9	20,6	23,4	31,0	43,7	57,9
Short-term displacement	δ _{V,y,0}	[mm]	0,6	0,6	0,6	0,6	1,2	1,2	1,2
Long-term displacement	δv,y,∞	[mm]	0,9	0,9	0,9	0,9	1,8	1,8	1,8
Shear load	Vx	[kN]	2,4	2,4	5,2	5,2	5,2	_ 1)	_ 1)
Short-term displacement	δ _{V,x,0}	[mm]	0,4	0,4	0,8	0,8	0,8	_ 1)	_ 1)
Long-term displacement	δ _{V,x,∞}	[mm]	0,5	0,5	1,2	1,2	1,2	_ ¹⁾	_ 1)

¹⁾ No performance assessed

Table C24: Displacements under shear load (JTA K)

Anchor channel					J	ГА		
Anchor channel					K40/25	K50/30	K53/34	K72/48
Shear load	Vy	[kN]	3,6	7,1	7,9	12,3	21,8	39,7
Short-term displacement	δ _{V,y,0}	[mm]	0,6	0,6	0,6	0,6	1,2	1,2
Long-term displacement	δv,y,∞	[mm]	0,9	0,9	0,9	0,9	1,8	1,8

Table C25: Displacements under shear load (JZA and JXA)

Anchorobound			JZA		٦	(A	
Anchor channel			K41/22	W29/20	W38/23	W53/34	W64/44
Shear load	Vy	[kN]	10,4	7,7	18,1	38,3	48,3
Short-term displacement	δν,y,0	[mm]	1,4	0,8	1,9	1,5	3,1
Long-term displacement	δv,y,∞	[mm]	2,1	1,1	2,9	2,3	4,7
Shear load	V _x	[kN]	4,1	4,8	6,2	11,2	25,6
Short-term displacement	δ _{V,x,0}	[mm]	0,7	1,3	0,6	1,0	2,0
Long-term displacement	δ _{V,x,∞}	[mm]	1,0	1,9	0,9	1,5	3,0

JORDAHL anchor channel JTA, JZA and JXA

Performance Displacements under shear load

Page 47 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

					JTA			
Anchor channel		W40/22	W40+	W50/30	W50+	W53/34	W55/42	W72/48
Steel failure					1	1		
Product factors	k 13, k 14		Valu	ies are tak	en from E	N 1992-4:2	2018	
able C27: Character	istic resistanc	es under c	combined t	ension and	d shear loa	ad (JTA K)		
				J	ГА			
Anchor channel		K28/15	K38/17	K40/25	K50/30	K53/34	K72/48	
Steel failure		1	I	I	I	1	I	
Product factors	k 13, k 14		Values a	re taken fro	om EN 199	92-4:2018]
Anchor channel		JZA		J	(A	1		
		JZA		J	(A			
		K41/22	W29/20	W38/23	W53/34	W64/44		
Steel failure								
Product factors	k 13, k 14	Valu	ies are tak	en from El	N 1992-4:2	2018		
ORDAHL anchor	channel JT	Ā, JZA a	ind JXA					
erformance							I AN	nex C1

Page 48 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

									JTA															
Ancho	or chan	nel			K28/15	K38/17	K40/25 W40/22	W40+	K50/30 W50/30	W50+	K53/34 W53/34	W55/42	K72/4 W72/4											
Steel 1 Solt	ailure:	Anch	or, coni	nectio	on betwo	en anc	hor and	channe	l, local f	lexure o	of chann	el lip, cl												
		M8			1,0	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)											
		M10			1,0	1,7	1,9	1,9	1,9	1,9	1,9	_ 1)	_ 1)											
		M12			1,9	1,7	1,9 3.0	3,0	2,5	2,5	2,5	_ 1)	_ 1)											
	R30	M16			_ 1)	3,2	3,6 7,8	7,8	4,0 6,0	6,0	6,0	6,3	_ 1)											
		M20			_ 1)	_ 1)	- ¹⁾	_ 1)	4,0	9,5	8,9 10,1	10,3	10,3											
		M24			_ 1)	_ ¹⁾	_ 1)	_ 1)	9,5 _ ¹⁾	_ 1)	- ¹⁾	14,8	14,8											
		M8	NRk,s,fi = VRk s v fi		0,8	_ ¹⁾	_ 1)	_ ¹⁾	_ 1)	_ 1)	_ ¹⁾	_ 1)	_ 1)											
tance		M10			N _{Rk,s,fi}	N _{Rk.s.fi}		0,8	1,5	1,5	1,5	1,5	1,5	1,5	_ 1)	_ 1)								
Characteristic resistance		M12					N _{Rk,s,fi}	N _{Rk,s,fi}	N _{Rk,s,fi}	N _{Rk,s,fi}	N _{Rk,s,fi}			1,3	1,5	1,5	2,6	2,5	2,5	2,5	1)	_ 1)		
ristic	R60	M16			[kN]	_ 1)	2,4	2,6 3,6	5,3	3,5	4,5	4,5	4,8	_ 1)										
racte		M20	- 100,0,9,11		_ 1)		5,3	_ 1)	4,5 3,5	7,1	6,5	7,6	7,6											
Cha						_ 1)	1)	1)	7,1 _ ¹⁾	1)	7,5 - ¹⁾													
		M24										11,1	11,1											
		M8			0,6	_ ¹⁾	- ¹⁾	_ 1)	_ 1)	_ 1)	- 1)	_ 1)	_ 1)											
		M10			0,6	1,0	1,1	1,1	1,1	1,1	1,1	_ 1)	_ 1)											
		M12								-						0,7	1,0	1,1 1,6	1,6	1,6	1,6	1,6	_ 1)	_ 1)
	R90	M16																		_ ¹⁾	1,4	2,0 2,9	2,9	2,5 3,0
		M20							_ ¹⁾	_ ¹⁾	_ ¹⁾	_ ¹⁾	2,5 4,8	4,8	4,2 4,8	4,9	4,9							
		M24			_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_1)	7,3	7,3											

¹⁾ No performance assessed
 ²⁾ In absence of other national regulations

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under fire exposure

									JTA																																
Ancho	r chan	nel			K28/15	K38/17	K40/25 W40/22	W40+	K50/30 W50/30	W50+	K53/34 W53/34		K72/48 W72/48																												
Steel fa bolt	ailure:	Anch	or, coni	nectio	on betw	een anc	hor and	channe	l, local f	lexure o	of chann																														
ø		M8			0,5	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)																												
stanc		M10			0,5	0,8	0,8	0,8	0,8	0,8	0,8	_ 1)	_ 1)																												
c resi		M12	N _{Rk,s,fi}	[kN]														[kN]												[kN]	[kN]	[kN]	0,5	0,8	0,8 1,1	1,1	1,2	1,2	1,2	_ ¹⁾	_ 1)
teristic	R120	M16	= V _{Rk,s,y,fi}																											_ 1)	1,0	1,2 1,6	1,6	2,1 2,3	2,2 2,3	2,2 2,3	2,6	_ 1)			
Characteristic resistance		M20	v ĸĸ,s,y,ħ	V Rk,s,y,fi	VRk,s,y,fi	V Rk,s,y,fi	V Rk,s,y,fi	v ⋉ĸ,s,y,ħ	v rk,s,y,ĭi	v пк,S,y,П	¥ KK,S,Y,∏	v rk,s,y,ĭi	V KK,S,y,fi	V Rk,s,y,fi	VRk,s,y,fi	V _{Rk,s,y,fi}	V _{Rk,s,y,fi}		_ 1)	_ ¹⁾	_ ¹⁾	_ 1)	2,1 3,6	3,6	3,0 3,5	3,6	3,6														
Ċ		M24			_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	_ 1)	5,4	5,4																												
Partial factor $\gamma_{Ms,fi}^{2)}$		1,0																																							

²⁾ In absence of other national regulations

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under fire exposure

Page 50 of European Technical Assessment ETA-09/0338 of 20 September 2022

English translation prepared by DIBt

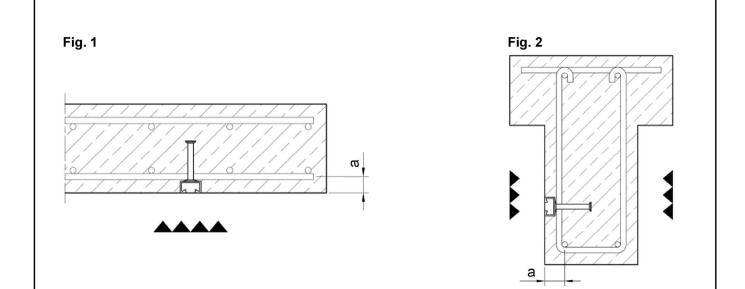


Table C30: Minimum axis distance under fire exposure

							JTA			
Anc	hor cha	nnel		K28/15	K38/17	K40/25 W40/22 W40+	K50/30 W50/30 W50+	K53/34 W53/34	W55/42	K72/48 W72/48
	R30			35	35	35	35	50	50	50
Minimum axis	R60		[mm]	35	35	35	35	50	50	50
distance	R90	а		45	45	45	45	50	50	50
	R120			60	60	60	60	65	70	70

JORDAHL anchor channel JTA, JZA and JXA

Performance

Minimum axis distance under fire exposure

For Design method I or II for test method A1 and A2 according to EOTA TR050, June 2022

Table C31: Combinations of anchor channels JTA and channel bolts for fatigue tension loading

		Ai	nchor		C	hannel bolt	-0
Anchor	channel	Туре	da [mm]	Туре	Thread diameter	Strength grade	Surface
	W40/22		9,0	JC	M12	8.8	
	VV40/22		9,0	10	M16	4.6, 8.8	
	W40+		10,8	JC	M12	8.8	electroplated,
JTA	VV40+	R	10,8	JC	M16	4.6, 8.8	hot-dip
517	W50/30		9,0	JB	M16, M20	4.6, 8.8	galvanized
	W50+		10,0	JB	M16, M20	4.6, 8.8	
	W53/34		11,5	JB	M16, M20	8.8	

Table C32: Characteristic resistances of anchor channels JTA and channel bolts under fatigue tension load with n load cycles without static preload ($N_{Ed} = 0 \text{ kN}$) – steel failure

Anchor chan				JTA		
Anchor chain	lei	W40/22	W40+	W50/30	W50+	W53/34
	Load cycles n			∆N _{Rk,s,0,n} [kN]		
	≤ 10 ⁴	11,7	12,8	16,5	16,5	22,2
Characteristic	≤ 10 ⁵	6,7	7,7	9,8	9,8	13,2
resistances under fatigue	≤ 10 ⁶	3,8	4,7	5,8	5,8	7,9
load in tension without static preload	≤ 2 · 10 ⁶	3,2	4,0	4,9	4,9	6,7
	≤ 5 · 10 ⁶	2,6				
	≤ 10 ⁸	1,2	3,3	4,0	4,0	5,5
	≥ 10 ⁸	_ 1)				

¹⁾ No performance assessed

Table C33: Characteristic resistances of anchor channels JTA under fatigue tension load with n load cycles without static preload ($N_{Ed} = 0 \text{ kN}$) – concrete cone and pullout failure

Anchor chan	nel	JTA
	Load cycles	$\eta_{k,c,fat} = \eta_{k,p,fat}$
	n	[-]
Reduction factor for	≤ 10 ⁴	0,736
	≤ 10 ⁵	0,665
$\Delta N_{Rk,c,0,n} = \eta_{c,fat} \cdot N_{Rk,c}$ $\Delta N_{Rk,p,0,n} = \eta_{p,fat} \cdot N_{Rk,p}$	≤ 10 ⁶	0,600
	≤ 2 · 10 ⁶	0,582
Static resistances N _{Rk,c}	≤ 5 · 10 ⁶	0,559
and N _{Rk,p} according to	≤ 6 · 10 ⁷	0,500
	≤ 10 ⁸	0,500
	≥ 10 ⁸	0,500

JORDAHL anchor channel JTA, JZA and JXA

Performance

Characteristic resistances under fatigue tension load according test method A1 and A2 (JTA W)

For Design method I or II for test method C according to EOTA TR050, June 2022

Table C34: Combinations of anchor channels JXA and channel bolts for fatigue tension loading

Anchor channel		Anchor		Channel bolt					
		Туре	da; t _w [mm]	Туре	Thread diameter	Strength grade	Surface		
AXL	W38/23	R	10,0	JXH	M16	8.8	Electroplated,		
	W53/34	R, I	11,5; 6,0	JXB	M20	8.8	hot-dip		
	W64/44	I	7,1	JXE	M24	8.8	galvanized		

Table C35: Characteristic resistances ($\Delta N_{Rk,s,lo,n}$) of anchor channels JXA and channel bolts under fatigue tension load with n load cycles with characteristic lower load ($N_{lok,s,n}$) – steel failure

Anchor channel		JXA							
Alichor chai	W38/23		W53	8/34	W64/44				
	Load cycles	$\Delta N_{Rk,s,lo,n}$	$N_{lok,s,n}$	$\Delta N_{Rk,s,lo,n}$	$N_{lok,s,n}$	$\Delta N_{Rk,s,lo,n}$	N _{lok,s,n}		
	n	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]		
	≤ 10 ⁴	16,0	0,0	30,0	0,0	55,0	0,0		
	2 · 10 ⁴	16,0	0,0	29,0	0,0	45,2	0,0		
	5 · 10 ⁴	13,3	2,5	22,5	3,0	34,6	9,4		
Characteristic	1 · 10 ⁵	10,9	4,9	18,5	6,7	28,3	16,9		
resistances under	2 · 10 ⁵	8,9	6,9	15,2	9,7	23,1	23,0		
fatigue tension load	5 · 10 ⁵	6,9	9,0	11,8	12,9	17,7	29,4		
with static preload	1 · 10 ⁶	5,6	10,2	9,7	14,9	14,5	33,2		
	2 · 10 ⁶	4,6	11,2	8,0	16,5	11,8	36,4		
	5 · 10 ⁶	3,5	12,3	6,2	18,1	9,1	39,6		
	1 · 10 ⁷	3,5	12,3	6,2	18,1	7,4	41,6		
	5 · 10 ⁷	3,5	12,3	6,2	18,1	4,6	44,9		
	≥ 10 ⁸	3,5	12,3	6,2	18,1	3,8	45,9		

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under fatigue tension load according test method C (JXA)

For Design method II for test method C according to EOTA TR050, June 2022

Table C36: Characteristic resistances of anchor channels JXA under fatigue tension load with n load cycles with lower load share ($S_{lok} = 2,25N_{Elok}/N_{Rk,c(p)} \le 0,8$) – concrete cone and pullout failure¹)

Anchor channel		JXA								
	Load	$\eta_{k,c,fat} = \eta_{k,p,fat}$								
	cycles n	S _{lok} = 0,0	S _{lok} = 0,1	S _{lok} = 0,2	S _{lok} = 0,3	S _{lok} = 0,4	S _{lok} = 0,5	S _{lok} = 0,6	S _{lok} = 0,7	S _{lok} = 0,8
	≤ 10 ⁴	0,725	0,668	0,600	0,527	0,450	0,370	0,288	0,205	0,120
Reduction factor for	2 · 104	0,704	0,650	0,585	0,514	0,439	0,360	0,279	0,197	0,114
	5 · 104	0,677	0,627	0,566	0,497	0,424	0,347	0,268	0,188	0,106
$\Delta N_{Rk,c,E,n} = \eta_{c,fat} \cdot N_{Rk,c}$	1 · 10 ⁵	0,656	0,610	0,551	0,484	0,412	0,337	0,260	0,181	0,100
$\Delta N_{Rk,p,E,n} = \eta_{p,fat} \cdot N_{Rk,p}$	2 · 10⁵	0,636	0,592	0,536	0,471	0,401	0,328	0,251	0,174	0,094
Ctatia registances N	5 · 10⁵	0,608	0,569	0,516	0,454	0,386	0,315	0,240	0,164	0,087
Static resistances N _{Rk,c} and N _{Rk,p} according to	1 · 10 ⁶	0,588	0,551	0,501	0,441	0,375	0,305	0,232	0,157	0,081
Annex C9	2 · 10 ⁶	0,567	0,534	0,486	0,428	0,364	0,295	0,223	0,150	0,075
	5 · 10 ⁶	0,539	0,511	0,466	0,411	0,349	0,282	0,212	0,140	0,067
	1 · 10 ⁷	0,519	0,493	0,451	0,398	0,337	0,272	0,204	0,133	0,061
	2 · 10 ⁷	0,498	0,476	0,436	0,385	0,326	0,262	0,195	0,126	0,055
	5 · 10 ⁷	0,471	0,453	0,416	0,367	0,311	0,250	0,184	0,116	0,047
	≥ 10 ⁸	0,450	0,435	0,401	0,354	0,300	0,240	0,176	0,109	0,041

¹⁾ N_{Elok} is the characteristic lower cyclic load on the anchor

In absence of other national regulations the following partial factors are recommended for design method I and II for all failure modes:

 $\gamma_{Ms,fat}$ = 1,35 (steel) $\gamma_{Mc,fat}$ = $\gamma_{Mp,fat}$ = 1,50 (concrete)

JORDAHL anchor channel JTA, JZA and JXA

Performance Characteristic resistances under fatigue tension load according test method C (JXA)